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1 Introduction

1.1 Background

All optimisation algorithms, whether of conventional design, or based on evo-
lutionary methods, rely on being able to perform a direct comparison between
two competing solutions. In order to derive a selective pressure (or gradient)
towards an optima, the comparison should yield that either solution A is su-
perior to B, or vice versa. For progress towards the global optima, then the
comparison must also report that the true superior solution is indeed superior.
If the solutions are equivalent, then there is no information as to which may
be genotypically closer to the optimum and no progress towards the optima
can be made unless a superior solution to either A or B exists elsewhere, or
can be generated somehow.

With single objective problems, the assignment of a degree of fitness that
is used to compare two solutions, is often straightforward. Complexities are
introduced however when constraints are also considered. With more than one
objective, it is likely that there no longer exists a single solution, but rather
the best objective values are described by the Pareto front. The concept of
non-domination applies and infers that two solutions lying on the Pareto front
are therefore equivalent until some additional external preferences are applied .
In order to derive a gradient or selective pressure however, the optimisation
algorithm will still require a single-dimensional fitness assignment method
that allows solution A to be compared directly with solution B, even though
the algorithm may be maintaining an entire Pareto front in a single run.

Pareto ranking methods alone, as described in chapter ??, will create a
selective bias towards solutions on the Pareto front, but will not necessarily
produce solutions that are spread across the front or at the edges. Additional
elements in the fitness assignment are required to aid the Pareto ranking in
order to create a diverse solution set.
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Various forms of Pareto ranking and sharing/clustering have been ex-
ploited in recent years to develop a large number of multi-objective opti-
misation algorithms which can solve bi-objective optimisation problems effec-
tively and reliably, for example, NSGA-II, SPEA-II etc. However, it is known
that many of the methods which are efficient on bi-objective problems do not
scale well to problems with large numbers of objectives (4+ typically cause
issues) [8, 6].

As the number of objectives increases, typically the proportion of non-
dominated solutions within a search population increases [4]. The result is that
if all of the solutions are non-dominated, then all of the solutions will have the
same Pareto rank, and the search towards the Pareto front reaches a plateau.
In practice, the selective pressure is low even in the early phases of the search
when dominated solutions exist, as only few Pareto ranks are needed to classify
the population. The secondary elements of the fitness assignment function now
dominate. These secondary elements are often sharing or clustering methods
and serve to distribute the solutions across the non-dominated front. Thus
with many-objectives, the initial optimisation progression is weakly towards
the Pareto front, then in the later stages of the optimisation, the solutions are
just spread out evenly. As the dimensionality increases, the spreading actions
dominate rapidly giving non-dominated solutions distributed evenly, but not
near the true Pareto front.

Real engineering problems are often characterised by many objectives,
many constraints, or both. Often problems have constraints where information
on the degree of constraint is available, and the constraints can be converted
to objectives (for example chapter ??). The constraint conversion however
increases the dimensionality of the objective space (primarily in the early
phases of the search until the constraints are satisfied).

The problem is how to design a many-objective fitness assignment method
that will allow an optimisation algorithm to produce non-dominated fronts
that are both well-spread and are also a good approximation of the true
Pareto front. Currently, there are few algorithms that are designed specifically
to tackle many-objective problems.

1.2 Many-Objective Fitness Assignment Methods

Two alternative approaches have been employed to date to derive useful fit-
ness assignment processes for many objective problems: either augment the
Pareto ranking concept with functions that can aid the progression towards
the Pareto front; or to use approaches that do not use Pareto ranking. A gen-
eral observation is that methods based on Pareto ranking still perform well on
bi-objective problems, but may have computational performance issues when
scaling to very large numbers of objectives; whereas many non-Pareto rank-
ing methods scale well computationally, but are not necessarily so efficient at
approximating the Pareto front with low numbers of objectives. Why do these
different methods behave so differently?
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Fundamentally, the fitness assignment process maps the multi/many ob-
jective space into a single dimension to allow the solutions to be ranked. There
are some idealised optimisation behaviours which we would like to promote
through the fitness assignment process:

1. A solution that is dominated should not be assigned a fitness superior to
its dominating solution;

2. If two solutions are non-dominated, the solution with the closest neigh-
bours should be inferior;

3. If two solutions are non-dominated, the solution closest to the true Pareto
front should be superior;

4. Constrained solutions should be inferior to feasible solutions.

These 4 idealised optimisation behaviours all assume that the objective
functions (and constraint satisfaction) themselves improve (whether in a min-
imisation or maximisation sense) as the true solution quality improves. It must
be remembered that it is possible for the objective functions only to be good
indicators of true solution performance in specific regions of the search space,
leading to multi-modalities and therefore ‘local’ Pareto optimal fronts. How-
ever the fitness assignment process is by definition applied after the objectives
have been defined and therefore must assume that the objective functions do
indeed provide a true reflection of the solution quality. The ability of any
optimisation algorithm to escape local optima is a property of how the new
trial solutions are generated, not the fitness assignment process: generally in
evolutionary methods mutation-based techniques are employed to help search
for global optima.

Whenever a high dimensional space is mapped to a lower dimension, in-
formation has to be discarded and a compromise is often drawn, leading to a
non-ideal fitness assignment and therefore potentially inappropriate ranking of
the solutions. There are also examples where the idealised behaviour may not
always produce the best performing algorithm: the handling of constraints
may well be improved by compromising on item 4 [1]. Constraint handling
techniques are considered further in chapter ??.

Many approaches to multi-objective fitness assignment exploit Pareto
ranking methods, which treat item 1 above as the dominant requirement, with
item 2 as a secondary ranking element. Interestingly, many of these methods
(for example NSGA, NSGA-II, MOGA, SPEA, SPEA-II etc.) have no mecha-
nism for addressing item 3 directly. Instead the algorithms rely on the concept
that in bi-objective spaces, driving away from dominated solutions (item 1)
is a very good approximation of item 3 (moving towards the Pareto front).
However for many-objective spaces where the majority of solutions are non-
dominated, the approximation breaks as item 1 becomes ineffective. Thus
we can now see the mechanism which describes the variation in behaviour
between the Pareto ranking and non-Pareto methods: whether they address
item 3 indirectly through Pareto concepts, or directly through other means.
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Unfortunately, item 3 above is difficult to convert to a fitness metric, as if
we knew the Pareto front from the design of the fitness assignment process,
we would have solved a large part of the problem, with only the corresponding
decision-space region to be identified! All of the methods that function well
for many-objective problems have item 3 as the primary fitness assignment
mechanism, with item 2 and sometimes also item 1 as secondary processes.

1.3 Fitness assignment visualisation

When designing and evaluating alternative fitness assignment mechanisms,
it is useful to be able to visualise the behaviour the assignment process in
the objective space. A simple mechanism is to create a sample set of solution
points in objective space, and then evaluate the fitness that would be given to
each solution. One of the solution points can then be moved across the entire
objective region, usually by gridding the space to some convenient resolution,
and then graphing the variation of fitness of each solution point (including a
graph for the point that is moving) as this single point is moved. The result
for a bi-objective problem is a set of 3D surfaces that describes how the fitness
of the moving and fixed points vary as the one objective point moves. If we
draw contour lines of constant fitness on these surfaces, then we can create
maps of iso-fitness contours that can be used to visualise the behaviour of the
fitness assignment method.

Although the iso-fitness contour concept can be extended to many objec-
tives, high-dimensional visualisation becomes an issue. However, in conjunc-
tion with the 4 idealised optimisation behaviours described in section 1.2, the
key characteristics of the fitness assignment process can often be determined
from visualisation in two dimensions, and the expected behaviour in many
dimensions predicted accurately. For simple aggregation functions, where the
fitness of a point is independent of the location of other objective vectors,
the iso-fitness contours alone suffice and a detailed example is provided in
section 3.1.

For more complex ranking methods, we need to visualise how the rank-
order would be influenced by the geometry of the points. For these methods
(such as NSGA etc.) it is more useful to consider a contour of relative iso-
fitness. A map of relative fitness is calculated by subtracting the fitness map of
a fixed point, from the fitness map of the moving point (assuming the assigned
fitness value is to be minimised in the ranking process). For example, figure 1
shows the locations of 5 fixed points. As a 6th point is moved through the
objective region, the fitness of the point of interest (at [0.7, 0.85] in the figure)
is calculated and subtracted from the fitness that the 6th moving point would
have at the current location of the 6th point on the graph. The result is that
points which lie on a zero-valued contour are directly equivalent to the fixed
point being studied, when considered for ranking. All regions which dominate
the fixed point of interest should have a value less than zero, and all regions
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that are dominated should have values greater than zero. Thus item 1 in
section 1.2 would be satisfied. To satisfy item 2, non-dominated solutions that
are more crowded than the point of interest should have a positive relative
fitness, and non-dominated solutions that are less crowded should have a
negative relative fitness. To satisfy item 3, the local gradient of the fitness
contour should always be to improve all objectives, i.e. falling towards the
origin of the graph (in a minimisation sense), or as a worst-case leave an
objective unchanged. Any regions where the gradient is towards degrading an
objective value may allow a solution nearer to the true Pareto front to appear
inferior to one further away. Figure 1 demonstrates these regions of relative
fitness and the direction of the gradients on the contour where points are
directly equivalent to the point of interest at location [0.7, 0.85]. Section 2.2
provides a detailed example of the iso-fitness contour visualisation process in
action.

Fig. 1. Example relative iso-fitness map showing an idealised relative fitness be-
haviour in the dominated, dominating and non-dominated regions of the fixed-point
at [0.7, 0.85] being examined.

The use of iso-fitness contours to visualise many-objective fitness assign-
ment methods provides a simple mechanism to analyse typical fitness be-
haviours. The process can be automated in high-dimensions where the domi-
nated and dominating regions can be assessed for correct relative performance,
and the local gradients calculated in the non-dominated region and tested for
any reverse-gradient conditions. However, although automation can identify
fitness assignment methods that are unlikely to work well in many-objective
spaces, the ability of the fitness assignment methods to create well-spread
solution sets is difficult to ascertain. In addition, the shape of the iso-fitness
contours is often conditioned on the distribution of the trial points in the ob-
jective region. Thus for accurate automated analysis, a Monte-Carlo process
is advised where many different example sets of objective vectors are tested
in order to explore the potential for adverse fitness behaviours.
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1.4 Chapter Structure

This chapter discusses the behaviour of existing fitness assignment methods
designed for bi-objective problems, and then methods that can function with
many-objectives. Enhancements to Pareto ranking are discussed in section 2,
and non-Pareto methods are discussed in section 3. Section 3.3 discusses how
some of the fitness methods may be used to aid the visualisation of the Pareto
front with many objectives, and section 4 concludes.

2 Pareto Ranking Extensions

2.1 Introduction

It is known that as the dimensionality of the objective space increases, then
the proportion of solutions which are non-dominated in the initial random
population tends to increase rapidly [4].

Generally, with many-objective problems and therefore very few domi-
nated individuals, the selective pressure on the remaining population is very
low as non-dominated individuals are considered equivalent. The spreading
mechanisms dominate the selection process and the solutions are spread,
rather than progressing towards the Pareto front [8]. The problem is now:
how can Pareto ranking methods be extended to restore the selective pressure
towards the Pareto front (i.e. item 3 in section 1.2)? Realistically, we would
rather have a set of points close to the Pareto front but poorly spread, rather
than a well-spread set of solutions that are far from the true optimal surface.

The Non-Dominated Sorting process alone can only separate a population
into individual rank layers. Alternative strategies, such as used in SPEA and
MOGA, count levels of domination and provide similar layered structures.

2.2 Non-Dominated Sorting Genetic Algorithm

The following example is based on the classic NSGA algorithm (see chap-
ter ??) that consists of a non-dominated sorting step, followed by sharing
within the sorted layers. The weakness in the original sharing method was
that a-priori knowledge was often needed in order to set the share radius. For
demonstration purposes here, a large fixed share radius of σ = 0.4 has been
used.

Figure 2 shows the relative fitness surface for point [0.7, 0.85] in a 6 point
set, 5 of which are in fixed locations and the 6th is moved through the objective
region in order to generate the fitness surface. The values on the graph are the
difference in fitness value between the moving and fixed point at [0.7, 0.85].
Figure 3 shows the corresponding relative iso-fitness contour map. Thus if the
moving point was at location [0.4, 0.63], then the figures show that the fitness
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Fig. 2. 3D relative fitness surface for
point [0.7, 0.85] and the NSGA method
with one moving and 5 fixed objective
vectors. Spreading factor is σ = 0.4

Fig. 3. Relative iso-fitness contours
for point [0.7, 0.85] and the NSGA
method with one moving and 5 fixed
objective vectors. Spreading factor is
σ = 0.4

of the moving point would be less by a value of 1.2 and therefore more likely
to be selected after ranking.

The key feature of figure 3 is that although the non-dominated front is
visible clearly (as a line connecting all the non-dominated points), many of
the contours traverse across the objective space, rather than focussing towards
the origin (which would be an ideal solution). If we consider point [0.2, 0.8] for
example, the relative fitness is very low, demonstrating that the point is highly
attractive. If we now consider point [0.75, 0.5], the point is non-dominated
with respect to the test point at [0.7, 0.85], however the local gradient is
focussed towards improving objective 1, but degrading objective 2! Therefore
the requirement of item 3 in section 1.2 is compromised as we are moving away
from the Pareto front. The problem with the classic NSGA algorithm is that as
the dimensionality increases, regions with adverse fitness gradient structures
become more common and the optimisation process is compromised.

With the contour alignment in the non-dominated region approximately
normal to the non-dominated front, the selective focus is to spreading the
solutions, rather than driving towards the Pareto front. With many objectives,
the problems are exacerbated.

2.3 Non-Dominated Sorting Genetic Algorithm II

Figures 4 and 5 show the relative fitness surface and relative iso-fitness con-
tours for the NSGA-II fitness assignment process with point [0.7, 0.85] as
a fixed reference. NSGA-II uses crowding distance rather than fitness shar-
ing (the use of −∞ at the edges has been modified to provide a consistent
and representative fitness landscape). It is clear that the fitness gradient is
changed significantly over the original NSGA algorithm. The crowding op-
erator is calculated based on the location of the neighbour solutions to the
point (in the same non-dominated rank), and the result is that the fitness
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in the local region remains constant as long as the local neighbour solutions
are the same. The fitness surface is now dominated by plateaus, rather than
continuous gradients. The optimisation performance is improved over NSGA
as there are fewer regions where the gradient is away from the Pareto surface,
however they still exist and point [0.75, 0.5] is a good example. Unfortunately,
within the plateaus, there is no selective pressure to either converge towards
the Pareto surface, or to spread evenly, however a plateau is preferable to a
reverse-gradient in the non-dominated region. In a practical algorithm, a mod-
erate or large population size would be desirable in order to reduce the scale
of each plateau region (i.e. smaller distances to neighbours). As the NSGA-
II algorithm maintains the elite solutions within the working population, in
practice the population sizes are often sufficiently large to make the rank-
ing process perform well in low-dimensions. With many-objective problems
however, still having areas in the non-dominated region of reverse-gradient
degrades the algorithm performance.
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Fig. 4. 3D relative fitness surface
for point [0.7, 0.85] and the NSGA-II
method with one moving and 5 fixed
objective vectors.

Fig. 5. Relative iso-fitness contours
for point [0.7, 0.85] and the NSGA-II
method with one moving and 5 fixed
objective vectors.

2.4 Multi-Objective Genetic Algorithm

The Multi-Objective Genetic Algorithm (MOGA) [4] counts the number of
solutions that a point is dominated by, and then uses a sharing mechanism to
spread the solutions. The fitness landscape that is obtained is very similar to
NSGA, however not all implementations of the algorithm confine the sharing
mechanism to individual rank layers, of the same domination count, as in the
NSGA algorithm. Figures 6 and 7 show the relative fitness surface generated
from the MOGA algorithm when the sharing was not confined to rank layers.

In the figures, a share distance of σ = 0.1 has been used. Issues with
reverse gradient in the non-dominated region are visible clearly in many re-
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Fig. 6. 3D relative fitness surface
for point [0.7, 0.85] and the MOGA
method with one moving and 5 fixed
objective vectors. Spreading factor is
σ = 0.1

Fig. 7. Relative iso-fitness contours
for point [0.7, 0.85] and the MOGA
method with one moving and 5 fixed
objective vectors. Spreading factor is
σ = 0.1

gions (point [0.85, 0.3] for example). The point [0.85 0.85] is interesting as
the gradient is converging towards it, acting as a local attractor. This is a
direct result of using global sharing, rather than restricting sharing to within
rank/domination layers, and is caused by empty regions within the domi-
nated space being emphasised by the sharing process. Additionally, the point
[0.85 0.85] shows that item 1 in section 1.2 is compromised as there are solu-
tions in the dominated region that are superior to the test-point at [0.7, 0.85].
If rank/domination layer sharing is applied, then the fitness surface is very
similar to the surface obtained with NSGA. The MOGA algorithm does not
scale well to many-objective problems either.

2.5 Hyper-volume Selection

Fundamentally, the hypervolume metric [10] assesses the total volume that
lies between a chosen reference point that acts as a corner to a hypercube,
and the non-dominated front, described by a set of points, which intersects
the hypercube. The closer the non-dominated front is to the Pareto front,
then the larger the hypervolume.

A simple way to use the hypervolume metric to augment the basic Pareto
ranking process is to first use Non-dominated sorting to establish the front
that a particular point belongs to, and then calculate the hypervolume of the
set of points which includes all points on that front and all points that are
worse. The point of interest is then removed from the set and the hypervolume
re-calculated, allowing a change in hypervolume, ∆S, to be established. The
change ∆S is then normalised by the maximum possible hypervolume to give
an indicator of local worth ∆S/Vmax. The fitness is then the Pareto rank
layer index number minus ∆S/Vmax. As long as ∆S/Vmax < 1 then the Pareto
ranking structure will be preserved, with the local shaping of the fitness surface
being provide by the hypervolume metric.



10 Evan J Hughes

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

Objective 1

Pareto + ∆S

Objective 2

R
el

at
iv

e 
F

itn
es

s

−0.6 −0.5

−0.4

−0.4

−0.3

−0.3

−0
.2

−0.2

−
0.

1

−0.1

0
00

0.1

0.1

0.14

0.14

Objective 1

O
bj

ec
tiv

e 
2

Pareto + ∆S

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 8. 3D relative fitness surface
for point [0.7, 0.85] and the hy-
brid Non-Dominated Sorting/ Hyper-
volume method with one moving and
5 existing objective vectors.

Fig. 9. Relative iso-fitness contours
for point [0.7, 0.85] and the hy-
brid Non-Dominated Sorting/ Hyper-
volume method with one moving and
5 existing objective vectors.

For minimisation, the hypervolume reference point R is placed in such
a way as to be at least weakly dominated by every member of the set to
be investigated. Often, the reference point is chosen as the maximum value
observed in all objectives so far.

Figures 8 and 9 show the resultant relative iso-fitness contours for a ref-
erence point at R = [1, 1]. It is clear to see that the fitness gradient is al-
ways well-defined in the dominated/ dominating regions, however in the non-
dominated region, there is a significant plateau before the non-dominated
front, which can reduce overall algorithm efficiency. There are no regions of
reverse relative fitness gradient however.

The hypervolume metric produces a weak ‘spreading’ effect, however it is
clear that points are being driven slowly towards [0.3, 0.9] by a gradient that
is primarily independent of solution locations: although it may cause solutions
to crowd locally in the area, the focus will aid the discovery of better extreme
solutions. The main drive is towards the Pareto front and the distribution
of solutions is a weak secondary process with this simple implementation.
Many of the practical implementations of the hypervolume metric [7, 3] use
extra processes to improve the distribution of the solutions further. The lack
of any non-dominated regions with reversed-gradient characteristics makes
the method suitable for many-objective optimisation, however the processing
complexity of the hypervolume often limits its applicability.

2.6 Indicator-Based Evolutionary Algorithm

The Indicator-Based Evolutionary Algorithm (IBEA) process [11] does not use
Pareto ranking directly, but instead uses indicator functions that allow the
fitness of a solution in a population to be determined. The indicators however,
are designed to preserve Pareto rank specifically.
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Fig. 10. Relative iso-fitness contours
for point [0.7, 0.85] and the IBEA
method with one moving and 5 ex-
isting objective vectors. Scaling factor
κ = 0.002

Fig. 11. Relative iso-fitness contours
for point [0.7, 0.85] and the IBEA
method with one moving and 5 ex-
isting objective vectors. Scaling factor
κ = 0.1

Figure 10 shows the iso-fitness contours for the IBEA ε indicator in equa-
tion 1, with a shape parameter of κ = 0.002. In (1) OiA is the value of the i

th

objective of population member A, k is the number of objectives and P is a
set of objective vector points that describe the population. For visualisation
purposes, the difference in the logarithm of the fitness has been plotted.

I(A,B) = min
ε
{OiA − ε ≤ OiB for i ∈ {1, . . . , k}}

f =
∑

OA∈P 6=OB

−exp(−I(A,B)/κ) (1)

It is clear to see that the relative iso-fitness contours of the ε indicator are
structured with only a weak relationship to the shape of the non-dominated
surface. The relative fitness values in the dominated and dominating regions
are correct. The fitness gradient is well structured with no reverse gradients,
and in regions beyond the edges of the non-dominated front, will promote good
edge exploration. The fitness method does lack any intrinsic directionality
to aid a uniform distribution of solutions across the Pareto front however.
The lack of gradient for forming uniform distributions in the population is
evidenced in figure 10 by solutions which are well-spread (e.g. [0.9, 0.2]) not
being promoted as superior to the point under test at [0.7, 0.85].

Figure 11 shows how an alternative choice of the scaling factor κ can
change the structure of the fitness surface. With the larger value of κ = 0.1,
the algorithm will not perform so well on highly concave Pareto fronts as the
iso-contours do not form sharp ‘corners’ and will penalise Pareto solutions
within a deep concavity. In figure 11, the points [0.3, 0.9] and [0.9, 0.2] both
lie on a fitness contour that is superior to the test point [0.7, 0.85], which is in
turn superior to point [0.8, 0.8]. All of the points are non-dominated, but the
modified fitness function is promoting solutions which are isolated over those
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which are crowded and will achieve a superior spread of solutions than with
the smaller value for κ.

The configuration is likely to give good performance on convex and mildly
concave Pareto fronts. The fitness contours also demonstrate that although
a strict Pareto relationship is maintained when comparing two solutions in
isolation, the act of combining the results for a population of solutions can
produce iso-fitness contours that do not follow the non-dominated front, yet
not compromise any of the ideal requirements itemised in section 1.2. The
IBEA method will work well on many-objective functions, however an external
diversity mechanism, such as clustering of an archive, is recommended to
achieve a controlled spread of solutions.

2.7 Summary of Pareto Methods

If the Pareto rank is enforced in the fitness process, with inferior ranks guaran-
teed to have a worse fitness than true non-dominated solutions, it is possible
to create optimisers that perform very well in bi-objective problems. How-
ever, for many-objective problems, the gradient of the fitness within the non-
dominated regions must also always focus towards improving all objectives to
some degree.

The IBEA and hypervolume methods have both demonstrated advanta-
geous fitness gradient structures, but at the expense of limited (if any) solution
distribution characteristics intrinsic within the fitness assignment. The desire
to move away from existing solutions, yet not degrade performance on any
objectives are conflicting in many circumstances. Realistically, the degree of
solution spreading that can be generated by the fitness assignment function
alone is limited, but an external archive can be used to help impose a uniform
spread of solutions across the Pareto front, for example, through clustering
etc.

3 Non-Pareto Ranking Methods

An alternative many-objective fitness assignment process is to use a method
that does not rely on Pareto ranking to sort the population. The simplest of
these non-Pareto methods is to use a conventional aggregation approach such
as weighted sum (section 3.1) and perform many single objective optimisa-
tions, changing the weight vector set a little each time to enable the entire
Pareto surface to be sampled.

A natural extension is to attempt to satisfy all the weight vectors simul-
taneously in a single run of the optimiser. Multiple Single Objective Pareto
Sampling (MSOPS) [5] is one method that develops this concept into a prac-
tical algorithm.

Many early multi-objective EAs do not use Pareto ranking methods, such
as VEGA (see chapter ??) and Weighted Average Ranking [2]. Many of these
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early approaches have some merit in many-objective spaces and are worthy of
investigation.

3.1 Repeated Single Objective

In the Repeated Single Objective (RSO) [6] approach, a conventional single
objective EA is used, based on an aggregation function, and repeat runs are
performed for different target search directions, allowing a Pareto front to
be constructed from a sequence of spot solutions. To allow direct compari-
son with true multi-objective EAs, each run of RSO uses a correspondingly
smaller population size and number of generations to keep the total number
of evaluations to identify a Pareto front consistent.

The RSO method is very simple but does require an a-priori specification
of the directions to search, in order to populate the Pareto front, which can
be difficult with previously unseen problems. The RSO method is known to
be effective in high-dimensional many-objective optimisation problems [6].
The performance and applicability of RSO to different objective structures
is determined primarily by the choice of the aggregation functions used to
identify optimal solutions.

A key benefit of pre-specification of search directions is that designer pref-
erences can be incorporated very easily and the search focussed to only regions
of interest. Additionally, Pareto front analysis may be performed as described
in section 3.3.

Aggregation Functions

Aggregation functions have been used for many years in classical gradient-
based optimisation. Generally, a single aggregation function will yield a single
Pareto point, however, all of the aggregation functions described here are
effective with both low and high-dimensional objective spaces. In practice,
once the structure of the Pareto surface has been approximated, a decision
has to be made about the particular Pareto point to choose. An aggregation
function can then be used in a single-objective optimisation framework to
identify a single near-Pareto solution.

The following common aggregation functions have been plotted with their
fitness functions arranged for objective minimisation. The fitness contours
have been drawn in the same context as the population-based methods, with
the 5 example population points plotted to allow direct comparison. It should
be remembered however that the following aggregation methods are condi-
tioned only by the weight vector and control parameters etc., and not by the
location of the other population members. Thus the iso-fitness contour plots
are contours of true fitness values, but should still allow dominated individuals
to be inferior to dominating solutions.
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Weighted Sum

The weighted sum score of k objectives is calculated using (2),where wi is part

of the weight vector W = [w1, w2, . . .] and is the weight of the ith objective
Oi.

f =
k∑

i=1

(wiOi) (2)

Weighted sum will not introduce discontinuities into the gradient of the aggre-
gated function but is able to generate points only on convex Pareto fronts.
The location of the point on the Pareto front is highly dependent on the shape
of the front itself, however the search ‘direction vector’ may be described as
V = W.
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Fig. 12. Iso-fitness contours for the
Weighted Sum aggregation method.
Weights are W = [1, 1]

Fig. 13. Iso-fitness contours for the
Weighted Sum aggregation method.
Weights are W = [2, 1]

Figures 12 and 13 show the iso-fitness contours for the weighted sum
aggregation function with two different weighting vectors. The diagonal line
radiating from the origin shows the search direction vector V. The iso-fitness
contours form hyperplanes normal to the search direction V. The weighted
sum method will return Pareto points where the normal to the Pareto front is
parallel to V, and therefore normal to the iso-fitness contours. Thus the ag-
gregation method is unsuitable if points within a concave region of a Pareto
front are to be identified. The primary benefit of the weighted sum is that if
the gradients of the individual objective functions are continuous, then the
gradient of the resulting fitness value, f , will also be continuous. No addi-
tional constraints are created, allowing the weighted sum to be used as an
aggregation method with all optimisation algorithms.

Goal Attainment

The goal attainment score of k objectives is calculated by transforming all of
the objectives into objective-space constraints using (3),where wi is the weight
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of the ith objective Oi, and Zi is the ith dimension of an idealised reference
point Z.

Minimise γ subject to:
Oi − wiγ ≤ Zi ∀i ∈ [1, k] (3)
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Fig. 14. Iso-fitness contours for the
Goal Attainment aggregation method.
Reference point is Z = [0.1, 0.2],
weights are W = [1, 3]

Fig. 15. Iso-fitness contours for the ε-
constraint aggregation method. Objec-
tive 1 is being minimised, while con-
straining objective 2 to ≤ 0.7

The control parameter γ is reduced until the constrained region consists of
a single feasible point. This point lies on the Pareto front. If the final value of
γ is negative, the reference point Z has been dominated. Figure 14 shows the
iso-fitness contours for the goal attainment aggregation function. As the iso-
fitness contours always form a ‘corner’ which has its sides aligned parallel to
the objective axes, goal attainment is able to generate points on both convex
and concave Pareto sets.

If the optimisation process converges to a solution that exactly ‘matches’
the weight vector, then C = (O1−Z1)/w1 = (O2−Z2)/w2 = . . ., where C is a
constant, allowing the convergence of the solution with respect to the weights
to be assessed. The weight vector corresponds to a point on the Pareto set
in the true direction given by the vector V = [w1, w2, . . .] (after offsetting
by the reference point Z). Thus the angle between the vectors V and O− Z
indicate whether the solution lies where it was expected or not. If the vector
V lies within a discontinuity of the Pareto set, or is outside of the entire
objective space, then the angle between the two vectors will be significant. By
observing the distribution of the final angular errors across the total weight
set, the limits of the objective space and discontinuities within the Pareto
set can be identified. This active probing of regions of interest can only be
performed if the weight vectors are defined prior to the optimisation run.
Section 3.3 provides examples of the process.
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Unfortunately goal attainment relies heavily on the optimisation algorithm
being able to implement constraints efficiently. Constraint handling in evolu-
tionary processes is possible, but not often efficient.

ε-constraint

The ε-constraint metric converts all but one of the objectives into objective
space constraints. The optimisation process operates on the one remaining
objective and the Pareto front point chosen is usually a point that best satisfies
the objective, and is just within the feasible region defined by the constraints
on the remaining objectives. As the constraint locations are moved, other
Pareto points may be identified. Equation (4) describes the process, where Ci

is the constraint location of the ith objective Oi.

Minimise f = Oj subject to:
Oi ≤ Ci ∀i 6= j ∈ [1, k] (4)

Figure 15 shows the iso-fitness contours for the ε-constraint aggregation
function. Like goal attainment, the iso-fitness contours always form a ‘corner’
which has its sides aligned parallel to the objective axes, thus ε-constraint
is able to generate points on both convex and concave Pareto sets. If the
objective to be minimised is chosen carefully, the gradient of the optimisation
surface can be very favourable, for example if the first three objectives are
highly multi-modal, but the fourth is unimodal, it makes sense to constrain
the first three and optimise the fourth.

Weighted Min-Max

The weighted min-max score of k objectives is calculated using (5),where wi

is the weight of the ith objective, Oi.

f =
k

max
i=1

(wiOi) (5)

Figures 16 and 17 show the iso-fitness contours for the weighted min-max
aggregation function with two different weighting vectors. Like goal attain-
ment, Weighted min-max iso-fitness lines form ‘corners’ and the method is able
to generate points on both convex and concave Pareto sets. If the optimisation
process converges to a solution that exactly ‘matches’ the weight vector, then
w1O1 = w2O2 = . . ., allowing the convergence of the solution with respect to
the weights to be assessed. The weight vector corresponds to a point on the
Pareto set in the true direction given by the vector V = [1/w1, 1/w2, . . .].

Weighted Min-Max is sometimes also referred to as a Weighted Tchebychev
Norm (spelling of Tchebychev may vary) and is a variant of the Lp norm
method with p = ∞. The Weighted Min-Max can be considered as a weighted
L∞ metric but with a reference point at the origin.
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Fig. 16. Iso-fitness contours for
the Weighted Min-Max aggregation
method. Weights are W = [2 1]

Fig. 17. Iso-fitness contours for
the Weighted Min-Max aggregation
method. Weights are W = [2 5]

Lp Norm

The Lp Norm score of k objectives is calculated by using (6),where Oi is the

ith objective of the vector O, Zi is the ith dimension of an idealised reference
point Z, Wi is a weighting component and p is a scalar factor that determines
the shape of the iso-fitness contours. For the classic Lp norm methods, unity
weighting factors Wi = 1 are usually assumed.

f =

[
k∑

i=1

Wi|Oi − Zi|p
] 1

p

(6)
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Fig. 18. Iso-fitness contours for the Lp

Norm aggregation method. Reference
point is Z = [0.4, 0.4], shape is p = 1

Fig. 19. Iso-fitness contours for the Lp

Norm aggregation method. Reference
point is Z = [0.4, 0.4], shape is p = 2

Figures 18, 19 and 20 show the iso-fitness contours for the Lp norm aggre-
gation function with three different shape parameters. The classic Lp norm
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Fig. 20. Iso-fitness contours for the Lp Norm aggregation method. Reference point
is Z = [0.4, 0.4], shape is p = 100

does not use a weight vector, rather the Pareto point that is closest to the
reference point Z will give the lowest aggregated value. Thus as Z is moved,
points on the Pareto front can be generated. The reference point Z must
dominate the nearest points on the Pareto front, otherwise the optimiser will
simply converge to the point Z if it lies within the objective region.

Figure 18 uses a shape of p = 1 and is therefore the L1 norm, or Manhattan
distance. The iso-fitness contours form lines that have similar properties to
the weighted sum, however if the reference point is placed within a concave
region of the Pareto front, points within the concavity can be found, although
the reference must be placed very close to the Pareto front in order to identify
regions of sharp concavities.

Figure 19 uses a shape of p = 2 and is therefore the L2 norm, or Euclidean
distance. The iso-fitness contours form circular contour lines, allowing shallow
concave regions to be identified easily. Sharp concavities will still require the
reference point to be placed very close to the Pareto front. With low values
of p, the gradient of the objective functions and therefore the gradient of the
aggregated fitness is maintained.

Figure 20 uses a shape of p = 100 and is therefore the L100 norm. The
iso-fitness contours approximate corners now, similar to the corners displayed
by the Weighted Min-Max method, allowing even quite sharp concave regions
to be identified easily. With these high values of p, the gradient of the aggre-
gated function can be subject to numerical errors and appear discontinuous.
A metric with p = ∞ is the Tchebychev Norm, and the infinite power is
approximated by a max() operation.

Vector Angle Distance Scaling (VADS)

Vector Angle Distance Scaling (VADS) is a new metric first introduced in [5].
The metric is designed specifically for identifying the Objective Front , rather
than just the Pareto front. The Objective front is the entire leading-edge of
the feasible objective space region. The Pareto front is therefore a subset of
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the objective front. If the objective front is identified, then areas where ‘gaps’
appear in the Pareto set can be analysed: if there are objective front solutions
that lie within the gap, then the break in the Pareto front is a discontinuity
due to a very deep or reentrant concavity. If there are no objective front
solutions in the region, then it is likely that the feasible objective region
is comprised of disconnected sub-regions. In bi-objective problems, it is not
difficult to identify regions of discontinuity in the Pareto front alone. However,
even with 3 objectives, a discontinuity may present as a ‘hole’ and is not
simple to identify without knowing the shape of the objective front too. All
of the metrics so far that are capable of identifying the Pareto surface in the
presence of concavities use an iso-fitness contour that forms a ‘corner’. To
identify regions of the objective front, a mechanism is needed to form the iso-
fitness contours into acute angles in order to allow deep probing into highly
concave regions. The use of these metrics for surface analysis is discussed
further in section 3.3.

The VADS score is the magnitude of the vector of objectives (|O|), divided
by the cosine of the angle between the vector of objectives and a target vector,
where the resulting angle cosine is then raised to a high power. Thus an
objective vector that forms a point lying on the target vector is assigned a
fitness which is the distance along the target vector. As the objective vector
strays from the target vector, the fitness is increased rapidly with increasing
offset angle.

The cosine of the angle can be calculated conveniently by a dot product
operation. The score equation for k objectives is calculated using (7), where
V is the k-dimensional unit-length target vector which describes the point on
the objective front to search for, O is the k-dimensional objective vector, | · |
indicates vector magnitude and q is a constant factor for scaling the cosine
result (typically q = 100). The vector V may also be described in terms of the
weight vector used in the other metrics as the normalisation V = W/|W|.

f =
|O|(

V · O
|O|

)q (7)

Low values for q may lead to difficulty in identifying very sharp concavities in
the objective front. The dot product of the vector V with the objective vector
O must remain positive for the basic VADS metric to function correctly, and
consequently objective offsets may be necessary for proper operation.

Figure 21 shows the iso-fitness contour for a weight vector of W = [1, 1]
and shaping parameter q = 100. The ‘tear-drop’ shaped iso-fitness contour is
made thinner by increasing q, allowing sharper concavities to be probed. With
very high values of q, care must be taken to prevent numerical instability. In
the figure, the logarithm has been taken to reduce the dynamic range of the
metric values experienced in the optimisation process. The use of logarithms
allows (7) to be re-formulated as shown in (8) and reduces the impact of
numerical imprecision.
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Fig. 21. Iso-fitness contours for the
Vector-Angle Distance Scaling aggre-
gation method. Weights are W =
[1, 1], q = 100. Logarithm of fitness
plotted for clarity.

Fig. 22. Iso-fitness contours for the
Vector-Angle Distance Scaling aggre-
gation method. Weights are W =
[2, 1], q = 10. Logarithm of fitness plot-
ted for clarity.

f = exp((q + 1) log(|O|)− q log (V ·O)) (8)

Figure 22 shows the iso-fitness contour for a weight vector of W = [2, 1]
and shaping parameter q = 10. With the lower value for q, the ‘tear-drop’
shaped iso-fitness contour is fatter and therefore less able to probe deep folds
in the objective surface. It is also clear that as the weight vector is changed,
the iso-fitness contour follows the vector, rather than being aligned to the
objective axes.

The final solution identified by an optimiser using the VADS metric should
have the objective vector O lying parallel to the target vector V. Thus the
angle between the two vectors can be used to assess final convergence. As
VADS is tolerant of ‘folds’ in the objective surface that cause discontinuities
in the Pareto front, angular errors between V and O indicate non-obtainable
sections in the objective region.

3.2 Multiple Single Objective Pareto Sampling

Multiple Single Objective Pareto Sampling (MSOPS) [5] is a technique that
allows multiple single objective optimisation searches to be run in parallel
and therefore exploit a larger effective working population. Each of the aggre-
gated optimisations is directed by its own vector of weights, or target vectors.
Thus the algorithm uses a matrix of target vectors to search in parallel. It
is also possible to combine searches in different directions and with different
reference points, and searches using different aggregation functions all within
a single optimisation run. The key advantage is that the algorithm does not
rely on Pareto ranking to provide selective pressure. As the target vectors are
generally decided a-priori , MSOPS provides an active probing of the Pareto
set, rather than passive discovery.
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The operation of MSOPS is to generate a set target vectors, T , and evalu-
ate the performance of every individual in the population, P , for every target
vector, based on a conventional aggregation method. As aggregation methods
(eg. weighted min-max, ε-constraint, goal attainment etc.) are very simple to
process, the calculation of each of the performance metrics is fast.

Thus each of the members of the population set P has a set of scores, one
for each member of T , that indicate how well the population member satisfied
the range of target conditions. The scores are held in a score matrix, S, which
has dimensions ||P ||×||T ||, where ||·|| indicates set cardinality. Each column of
the matrix S corresponds to one target vector (across the population P ). The
aggregate fitness, fi, of the ith member of P is calculated using equation 9,
where fn(Oi,Vn,Zn) is the aggregation function n with target vector Vn and
reference point Zn for objective vector Oi (which is the ith member of P ).

fi∈P = min
∀n∈T

(
fn(Oi,Vn,Zn)

min∀j 6=i∈P (fn(Oj ,Vn,Zn))

)
(9)

The flexibility of the approach is such that the target vectors can be arbi-
trary, either generated to give full coverage of the objective space if no a-priori
domain knowledge exists, or with some structure to target key elements of the
search volume. As the fitness combination method employed is based on the
set of fixed target vectors, the target vector set determines the final spread
of the obtained solutions. As a consequence though, the efficiency of the al-
gorithm is reduced in relation to the number of unobtainable target vectors
that do not pass through the feasible objective region.
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Fig. 23. 3D relative fitness surface
for point [0.7, 0.85] and the MSOPS
method with one moving and 5 ex-
isting objective vectors and using 10
Weighted Min-Max target vectors.

Fig. 24. Relative iso-fitness contours
for point [0.7, 0.85] and the MSOPS
method with one moving and 5 ex-
isting objective vectors and using 10
Weighted Min-Max target vectors.

Figures 23 and 24 show the relative fitness surface and contours for the
MSOPS algorithm using 10 target vectors, referenced at the origin, and the
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Weighted-Min Max aggregation function. It is clear in figure 24 that the rel-
ative fitness gradient in the non-dominated region is never counter to the
objective directions and so will provide rapid progress towards the Pareto
front; however the iso-fitness contours are also not aligned to the true non-
dominated surface of the other population members, rather they are aligned
to a combination of the target vectors and non-dominated surface. For exam-
ple point [0.8, 0.8] is non-dominated and yet does not lie on the same fitness
contour as the other non-dominated solutions as it is far from a target vector.
In contrast point [0.9, 0.2] is closer to a target vector line and so has a better
fitness (however is still inferior to the test point [0.7, 0.85]). The result is that
the final population will cluster around the points where the target vectors cut
the Pareto front (or the nearest feasible point in a weighted min-max sense).
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Fig. 25. Relative iso-fitness contours
for point [0.7, 0.85] and the MSOPS
method with one moving and 5 ex-
isting objective vectors and using 10
VADS target vectors (plotted as loga-
rithm of fitness). Shape parameter is
q = 100

Fig. 26. Plot of objective/decision
space for function (10). Circles are
VADS solutions, stars are Weighted
Min-Max solutions.

Figure 25 shows the MSOPS relative iso-fitness contours when using the
VADS Aggregation metric. The VADS contours in figure 25 are very compli-
cated and it is clear that the directions of the target vectors are a dominating
factor in the description of the fitness surface. The VADS metric is designed
for identifying the Objective front profile, rather than just the Pareto front.
Thus highly concave and re-entrant surfaces may be probed with this met-
ric. Unfortunately, the relative fitness gradient in the non-dominated regions
are often not ideal and optimisation performance is compromised in both
bi-objective and many-objective problems.

Empirical studies have shown that running the MSOPS algorithm with
both Weighted Min-Max and VADS Aggregation will provide superior opti-
misation performance than VADS alone. When both metrics are combined,
the weighted min-max process dominates initially and minimises the effects of
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reverse gradients in the non-dominated regions. As the algorithm converges,
the VADS metric can help to provide a more balanced search in difficult re-
gions such as extreme convexities.

3.3 Pareto Front Analysis

To demonstrate the use of RSO or MSOPS for analysis of the objective and
Pareto front, the Tanaka two-objective test function has been studied [9]:

O1 = x

O2 = y

0 ≥ −(x)2 −(y)2 + 1 + 0.1 cos
(
16 arctan

(
x

y

))

0.5 ≥ (x− 0.5)2 + (y − 0.5)2

0 ≤ x, y ≤ 1 (10)

Figure 26 shows the result of MSOPS using combined Weighted Min-Max
and VADS, applied to (10) with 51 target vectors (shown as dashed) and a
population of 50 (run for 100 generations). The stars indicate the best set of
solutions found with the weighted min-max and the circles are the best VADS
solutions. The 51 weight vectors were generated a-priori using the origin as
a reference point and designed to cover the objective space with equal angles
between neighbouring vectors.

It is clear that points on the boundary of the objective front have been
identified. The ‘leading edge’ of the objective space is identified by VADS,
while Weighted Min-Max finds the Pareto front. The use of two aggregation
functions is very useful for analysing the behaviour of the objectives, rather
than just the Pareto front. The area around [0.1, 0.3] is a discontinuity in the
Pareto front and as such has only been identified in the VADS search. The
corresponding plots of angular errors between each target vector and the ‘best
performing’ objective vector for VADS and min-max respectively are shown in
figures 27 & 28, sorted according to the weights with V1 (the first element of
the target vectors) increasing. It is clear that many of the target vectors were
satisfied with an error less than 2◦ to their nearest objective vector for VADS;
but there are areas with high errors for weighted min-max, indicating that
some target vectors could not be obtained exactly. These errors correspond to
the limits of the Pareto set in the VADS plot (first, and last two target vectors
in figure 27) and also to the discontinuities in the function in the weighted
min-max plot (around vectors 15 and 37 in figure 28).

This example demonstrates that because we know a-priori the regions of
the Pareto set that are being investigated, based on the set of target vectors,
we can quantify how close the optimisation result came. With large numbers of
objectives though, large numbers of target vectors may be required if a detailed
search is to be performed across the entire objective space in one pass. It is
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Fig. 27. Plot of angular errors (in de-
grees) of target vectors to their best
performing objective vector using the
VADS metric and function (10)

Fig. 28. Plot of angular errors (in de-
grees) of target vectors to their best
performing objective vector using the
weighted min-max metric and func-
tion (10)

simple though with RSO or MSOPS to target a range of smaller areas with
each run. The areas can be of varying size and diverse in each run if necessary,
providing extreme flexibility in the optimisation process and incorporation of
designer preferences and interactive decision-making. Strategies may be used
to yield extra information about the Pareto front such as generating a set of
target vectors that lie on a plane, allowing ‘slices’ through the Pareto front to
be visualised to test for continuity.

3.4 Summary of Non-Pareto Methods

Both RSO and MSOPS are capable of generating Objective and Pareto fronts
in low and high-dimensional objective spaces. However, the MSOPS process
is more efficient in practice and is recommended if multiple target vectors
are to be considered. The RSO algorithm is best when a single final optimal
solution is to be generated. Interestingly, although the IBEA method has been
described as using Pareto concepts, the relationship to MSOPS is very strong
and it could be argued that MSOPS is an indicator-based algorithm that has
not been restricted to identifying the Pareto front alone.

As both RSO and MSOPS utilise aggregation functions, the wide variety of
functions available allow a comprehensive analysis of the objective and Pareto
surface to be performed.

4 Conclusions and Recommendations

Most optimisation algorithms to date have focussed on bi-objective problems
and many, unfortunately, do not extend well to many-objective problems with
4+ objectives. This chapter has shown that the properties of the fitness as-
signment process can be visualised and analysed to assess the suitability of
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a method for many-objective optimisation. Some of the fitness assignment
methods may also be used to aid analysis and visualisation of the objective
and Pareto fronts.

It is unlikely that a simple fitness assignment function will provide both
selective pressure towards the Pareto front, while also providing effective
drive towards a set of well-spread solutions. It is more likely that an influ-
ence/mechanism external to the fitness assignment process may be needed
to ensure that a satisfactory distribution of solutions is obtained, such as
clustering or automatic target vector generation.
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