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Abstract

Realistic radar target models are required for use in
a missile–target simulation system. In this paper a
Multi-Species Genetic Algorithm is used to extract a
radar cross section model from high-resolution three-
dimensional radar target images by identifying the
dominant scattering centres. A typical image may re-
quire in excess of 2 Gbytes of storage space. Data
retrieval overheads on small systems render itera-
tive methods of model extraction impractical. This
method exploits the niche-finding characteristics of
the multiple species in the genetic algorithm to simul-
taneously identify multiple scattering centres. This
significantly reduces the data access requirements with
only a moderate increase in processing overhead.

I Introduction

The extracted models created by the algorithm de-
tailed in this paper are designed to be used with a
synthetic missile in 3-dimensional virtual engagement
scenarios. Real high-resolution target radar cross sec-
tion data consumes massive amounts of disk storage
space. This requirement may be overcome by identi-
fying and storing the locations of the main reflective
surfaces of the target. These collections of scatter-
ing centres can be replaced by models consisting of
ideal isotropic point scatterers placed in the same lo-
cations. This sufficiently approximates the target for
our purposes. Models generated from many different
target aspects may be combined with synthetic de-
tails, creating a realistic radar cross section with 4π
steradian coverage. The locations of the reflective
surfaces may be found by analysing Inverse Synthetic
Aperture Radar (ISAR) images of the target. These
images are the radar equivalent of an optical holo-
gram. An iterative method is often used to identify

the scatterer locations [Bhalla and Ling, 1996]. This
operates by first finding the size and coordinates of
the brightest spot in the image and places a scatterer
in the corresponding position in the model. An ISAR
image of the model is produced and subtracted from
the original image to remove the corresponding bright
spot. The process is repeated until all bright spots of
interest have been removed. Other methods have been
developed that rely on drawing contour maps of the
image and locating the scatterers within the bounded
regions [Breuille and Caille, 1994].
These methods work well but have one major draw-

back: A typical three dimensional image of 512 pixels
on each axis will require (512)3 complex numbers and
therefore two Giga-bytes of storage space. Finding the
location of the maximum value necessitates searching
the entire data set for each scatterer that is resolved.
Images often require 100 or more scatterers for accu-
rate representation and therefore the equivalent of 200
Gbytes of data must be retrieved from the storage me-
dia. On a small system, the data access and transfer
times are significant when compared to the processing
overhead. Producing a contour map of the image is
more intensive and therefore impractical.
A solution is therefore proposed where a genetic

algorithm is used to locate multiple bright spots in
one pass. These can then be formed into a model
and its effects subtracted from the original image as
before. Further applications of the GA will locate
any smaller points remaining. This multi-modal func-
tion approach, despite the small increase in process-
ing overhead, can make model calculation viable on a
small system.

II Multi-Modal Optimisation and Sharing

Conventional genetic algorithms use a single popula-
tion of a single species. The algorithms are designed



so the solutions presented by the different individu-
als converge on the single optimum solution of the
objective function. In multi-modal optimisation, the
genetic algorithm is designed to converge with multi-
ple solutions, each corresponding to a separate peak
in the objective function. A sharing mechanism may
be used to force a genetic algorithm to exhibit multi-
modal behavior [Goldberg, 1989, Pages 185–197]. The
sharing system operates by modifying the objective
value that is seen by each individual. If a number of
individuals all occupy the same peak in the objective
function they are made to share the objective value
at that point. This simple concept is enough to allow
multiple stable populations to form.
In a practical algorithm, a sharing function that

is related to the separation distance between two in-
dividuals (genotypic or phenotypic space) is used to
control the modification of the objective function.
Equation 2 [Michalewicz, 1992, Page 176] defines the
sharing function used, with d(χ(i), χ(j)) defined as
the distance between the chromosomes χ(i) and χ(j),
s(χ(i), χ(j)) is the sharing effect of j on i and α is a
factor for modifying the function shape. This func-
tion produces a linear result that moves from unity at
zero distance to 1−α at a distance of σ and then zero
thereafter.

d = d(χ(i), χ(j)) = |χ(i)− χ(j)| (1)

s(χ(i), χ(j)) =

{

1−
(

d(χ(i),χ(j))
σ

)

α d ≤ σ

0 d > σ
(2)

For each individual chromosome, χ(i), the distance
is calculated to every other chromosome, χ(j), in a
population of N individuals and the values for each
of the sharing functions are totalled (equation 3).
The result is used to derate the raw objective value
obj(χ(i)) yielding a new objective value O(χ(i)). This
is shown in equation 4.

S(χ(i)) =

N
∑

j=1

s(χ(i), χ(j)) (3)

O(χ(i)) =
obj(χ(i))

S(χ(i))
(4)

These sharing functions work well but crossover
between individuals from different populations often
yields poor solutions and therefore convergence is slow
and unpredictable. The individuals have a tendency
to distribute themselves evenly through out the ob-
jective surface. This leads to a large proportion of
the population being located on the highest peaks and
smaller peaks holding proportionally less individuals.
For the large and complex optimisation surfaces found
in scattering centre identification, large populations

are required. Thus the requirement for every individ-
ual to be compared to every other produces a signifi-
cant processing overhead.

To improve the effects of the crossover opera-
tions, a selective breeding strategy may be em-
ployed. This effectively only breeds like-with-like and
therefore crossover tends to produce better offspring
[Goldberg, 1989, Page 192–197]. This is easily accom-
plished by splitting the main population into a num-
ber of subpopulations that act as independent mating
pools. If the sharing strategy is applied as before, the
multi-species algorithm converges faster. The number
of peaks that are found is often restricted to the num-
ber of species though but a smaller total population
may be used to achieve similar results.

Due to the nature of the sharing function, absolute
convergence of all similar individuals on one point is
unlikely. This leads to the peak of the optima being
poorly identified. If we add an additional sharing rule
that says an individual only has to share with mem-
bers of other species, each species will converge on the
peak of an optima, with many individuals identify-
ing the true peak value. This effect may be further
enhanced by controlling the size of genetic mutations.
By reducing the size of the mutations with each subse-
quent generation, each species will eventually be con-
fined to its own locality and be forced to perform a
fine search of the area.

III Modified Multi-Species Algorithm

The sharing functions work well but suffer from a se-
vere processing overhead with every individual having
to be compared with every other. In an attempt to
reduce this, the sharing function has been modified to
operate with the statistics of each species rather than
its members. We can define the position and spread
of a species by the mean of the species chromosomes
and their standard deviation. Equations 5 and 6 define
this, where ns is the number of individuals in a species
and χ(i, k) denotes the chromosome of individual i of
species k. If we assume that the spread of individu-
als around the mean position is roughly Gaussian, a
sphere with a one standard deviation radius from the
mean will encompass 68% of the population. A two
standard deviation sphere will cover 95%. Thus we
may define 2σk as covering 95% of population k.

χk =
1

ns

ns
∑

i=1

χ(i, k) (5)

σk
2 =

1

ns

ns
∑

i=1

|χ(i, k)− χk|
2



=
1

ns

ns
∑

i=1

d(χ(i, k), χk)
2

(6)

Equation 7 defines the modified sharing function,
where σ′ is a minimum sharing distance analogous to
σ in equation 2. This sharing function is then applied
to all Ns species, except the members own, and the
results summed (equation 8). The objective cost for
the individual is then derated by one plus the share
value to account for the individual itself and is shown
in equation 9.

s(χ(i, j), χk) =

{

1−
(

d(χ(i,j),χ
k
)

σ′

k

)2

α d≤σ′
k

0 d>σ′
k

(7)

where σ′
k =

{

σk σk > σ′

σ′ σk ≤ σ′

S(χ(i, j)) = ns

Ns
∑

k=1

s(χ(i, j), χk)

2σk

∣

∣

∣

∣

∣

k 6=j

(8)

O(χ(i, j)) =
obj(χ(i, j))

1 + S(χ(i, j))
(9)

The sharing function defined in equation 7 is based
on a squared law rather than a linear function. This
affects individuals that are close to the species centre
more and allows an increase in calculation speed by
not requiring the square root of the magnitude of the
distance to be taken. Unlike the fixed shape individual
sharing functions used previously, the functions asso-
ciated with each species are dynamic and vary with
the geographical motion of the individuals within the
species. Figure 1 depicts the function shape graphi-
cally for a number of different species spreads. The
share values plotted on the y-axis are the results for
equations 7 and 8 for a single species with 10 indi-
viduals and the conditions for α (alpha), σ (sigma)
and σ′ (sigma′) shown on the graph. When a species
population is widely dispersed, the function has lit-
tle effect on other individuals. As a species popula-
tion converges, the range of the function decreases but
its influence increases. This forces different species to
separate as their populations converge. A minimum
distance, σ′, for the spread of the function is used to
prevent different species from converging too close to
one another. This helps increase the diversity of the
geographical spread of the species.

By calculating the distance to each species mean
position rather than to each individual, a significant
speed increase is achieved with the modified algo-
rithm. Experiments appear to show that the overall
performance of the algorithm is not compromised by
the changes.
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Figure 1: Typical Sharing Function Shapes

IV Algorithm Construction

A real valued chromosome with three parameters has
been used to define each individual. The parameters
are defined as being the (x, y, z) coordinates of a loca-
tion in the three-dimensional ISAR image. The geno-
typic level allows the parameters to have fractional
components. The genes are rounded to the nearest
integer to obtain the phenotypic data. The raw ob-
jective value is defined as the image intensity at the
indexed point.
The algorithm follows the usual format of ranking,

selection, crossover, mutation and evaluation but with
each species being processed separately. The same
number of offspring are generated as parents and a
total replacement policy is used. This helps slow con-
vergence and allows the species to relocate themselves
to minimise problems caused by overcrowding.
The fitness value F (x) is assigned according to rank

position px of individual x. The individual with the
lowestO(x) (least fit) being assigned a rank position of
1 and the best individual being assigned rank position
M . Equation 10 details the calculation of F (x).

F (x) =
2(px − 1)

M − 1
(10)

Stochastic Universal Sampling [Michalewicz, 1992,
Page 57] is used to select M individuals from the pop-
ulation, each individual having a probability of selec-
tion defined in equation 11.

Prob(x selected) =
F (x)

∑M

i=1 F (i)
(11)



The individuals selected are randomly shuffled and
then paired up for breeding. Uniform Crossover
[Michalewicz, 1992, Page 88] is used to generate two
new offspring from each pair of parents. This opera-
tor simply swaps over the genes of the parents with a
probability of 0.5. This crude operation on a real-
valued chromosome reduces the convergence speed
and helps to maintain a good geographical spread of
the individuals.

Genes are mutated with a probability of 0.3
with the range of the mutation being governed
by equation 12. This Non-Uniform mutation
[Michalewicz, 1992, Chapter 6] function is unity ini-
tially and progresses to zero at the final generation
and is used to modify the maximum deviation from
the current gene value, whereG is the generation num-
ber and Gm is the maximum number of generations.
Initially, the gene can mutate to any value within its
constrained range but this is reduced with time. The
range modifier function forces the genetic algorithm
to converge on a solution by confining the offspring of
each subsequent generation to a diminishing region.

R(G) = 1−





1− cos
(

(G−1)
(Gm−1)π

)

2





2

(12)

Figure 2 depicts the function shape graphically.
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Figure 2: Mutation Range Modifier Function

Various function shapes have been tried including
linear, square law and raised cosine. The nature of
the species behavior is that initially, the uniform dis-
tribution of individuals leads to the species mean po-
sitions all being located at the geographic centre of

the image. During the first few generations, the natu-
ral instinct of all the species is to colonise the highest
peak. By around the fifth generation, the main peak
becomes crowded and the species are forced to diver-
sify and find other smaller niches to colonise. This
diversification requirement means that the available
mutation range must be large for the first half of the
generations to allow the species to explore the image
properly. This natural crowding tendency is also re-
duced by impeding the natural convergence of the GA
through the use of the crude crossover mechanism and
total replacement. In the final stages of the GA, the
mutation range is limited to a very small locality, forc-
ing the species to converge on the true local optimum.

The objective function for the offspring is calculated
as previously detailed based on the statistics of the
parent population. Policies other than total replace-
ment have been tried but appear to offer little benefit
as the objective function is effectively dynamic with
the motion of the species.

The GA is terminated after 50 generations and the
best overall individual of each species is recorded as
a solution. Trials have shown that many species each
with small populations produce better results than a
few species consisting of large numbers of individuals.
This is due to the small species being able to adapt
more quickly to the dynamic objective function. A
small number of large species will all try to colonise
the highest peak only.

Experiments have shown that 30 species each with a
population of 15 individuals provide good results over
a range of different images. Over 50 generations, this
gives 22500 objective calculations for each run of the
genetic algorithm and can locate up to 30 peaks.

V Results

For the purposes of presentation, the following results
are for two-dimensional images. All the previous theo-
ries and algorithms apply except that the z coordinate
is forced to always be zero.

The performance and current state of the algorithm
may be assessed using the mean of the standard de-
viations of the species chromosomes. This gives an
indication of the geographical spread of the species
individuals. The upper section of figure 3 shows the
trace of the mean spread of 30 species. With the multi-
species genetic algorithm, the objective functions of
the species vary dynamically with the species motion.
The lower portion of figure 3 shows the best species
mean objective for each generation.

The objective functions yield little reliable informa-
tion to describe the current state of the algorithm.
Thus algorithm convergence is determined by the con-



vergence of the species chromosomes rather than the
convergence of the objective function as in a conven-
tional genetic algorithm. To test the algorithm, a sim-
ple model with nine scattering centres was used to gen-
erate a low-resolution test image. A genetic algorithm
consisting of 30 species, each with a population of 15
individuals was applied to the image. The algorithm
ran for 50 generations with a sharing limit of σ′ = 3
and α = 0.5 (equation 7).
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Figure 4: Final Geographical Spread of Species

Figure 4 shows the geographical locations of the
species after the final generation. Each individual is
represented by a cross and each species centre is rep-
resented by a circle. It is easily seen that for the ma-
jority of the species, convergence is total. Only 29

species are visible on the graph as the main peak in
this example is supporting two species. This is a rare
occurrence. Figure 5 shows the nine identified peak lo-
cations plotted on the objective surface. These points
were extracted from the species results by identify-
ing all the species whose best objective value had a
relative amplitude greater than 0.1. Any duplicated
points are removed and the resulting positions plot-
ted. It is quite obvious from figure 5 that the genetic
algorithm had no difficulty in identifying the peaks.
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Figure 5: Surface Plot of Image with Identified Peaks

Figures 6 and 7 show the results of the above algo-
rithm applied to a high-resolution ISAR image. The
image in figure 6 is of a 110 point test model with
a wide range of scatterer amplitudes. After five ap-
plications of a 30-species GA, 104 points have been
identified. The equivalent ISAR image of the model is
shown for comparison in figure 7.
Applying the algorithm to three-dimensional images

poses no problems, with good results being obtained
with between 30 and 50 species which have from 10
to 15 individuals per species. trials suggest that with
more than 50 species in an algorithm, overcrowding
can occur with multiple species occupying the same
peak. This can be counterproductive and it is better
to use fewer species and re-apply the GA instead.

VI Conclusions

The modified multi-species genetic algorithm de-
scribed in this paper has proved to have excellent
niche-finding properties for solving multi-modal op-
timisation problems. The reduced data retrieval re-
quirements for large problems leads to a significant
run-time saving over traditional algorithms where the



entire data set has to be searched multiple times. Ex-
periment has shown that the GA approach can si-
multaneously identify 10 locations reliably with only
25000 data accesses. If we apply the GA 10 times
to identify 100 scatterers, a total of 250,000 accesses
are required. The iterative approach accesses over 500
times as much data to achieve the same model reso-
lution. Two and three dimensional implementations
have been tested. Extension to further dimensions for
other problems should pose no difficulties.
With the current algorithm implementation, each

species has an equal probability of being able to
colonise the highest peak. This causes the species
to crowd the highest peak initially and then diverge
when one species has gained a foothold. From these
observations of species behavior, it is hypothesised
that by using species with different sized populations,
a bias is introduced that will eventually lead to the
largest species colonising the highest peak and the
other species spread according to peak and popula-
tion size. The smaller populations would be more
dynamic and therefore more able to find uncolonised
peaks. This should help maintain the genetic diversity
in the algorithm and therefore improve the geographi-
cal spread of the obtained solutions. A typical spread
of population sizes may be one large species with fifty
individuals down to many species each with say four
individuals.
Finally it should be noted that in this particular

algorithm, limited crossover between species is not
applied. A small amount of chromosome migration
between species was tried but it was found that the
performance of the algorithm was seriously reduced.
The effect of the migration was to make all the species
attempt to converge on the highest peak, causing re-
mote peaks to be missed by the algorithm.
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Figure 6: High-Resolution ISAR Plot, Target Data
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Figure 7: High-Resolution ISAR Plot, Model Data


