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ABSTRACT

Many missile–target simulation systems use random
numbers to mimic the effects of a fluctuating target
Radar Cross Section (RCS) in an attempt to min-
imise simulation times. In this paper a Genetic Al-
gorithm is used to optimise the complexity of a point-
scatterer model with a realistic radar cross section,
ultimately allowing real measured data to be used
in simulations. The performance of the genetic algo-
rithm is compared against an iterative optimisation
method and a known optimum solution. The radar
cross section models described in this paper are de-
signed to be used with a synthetic homing guidance
missile in 3-dimensional virtual engagement scenar-
ios. The models allow measured RCS data to be
combined with synthetic RCS details, creating a re-
alistic target radar cross section with 4π steradian
coverage.

INTRODUCTION

It is seldom practical to use real radar cross section
data with sufficient resolution due to the massive
data storage requirements involved. A series of point
scatterer models can be fitted to high resolution RCS
data (1, 2) and then combined using a Binary Space
Partition Tree structure (3, Pages 675–680) to al-
low the correct point scatterer model to be rapidly
retrieved for any aspect angle. Any gaps in the cov-
erage of the measured data can be filled with syn-
thetically generated RCS information by including
further point scatterer models in the tree structure.
Each point scatterer model is typically valid for only
a few degrees of coverage, therefore many individual
models are required to cover 4π steradians.

The electric field from a point scatterer model at
wavelength λ may be described as shown in equa-
tion 1.
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The field returned from the target is a complex quan-
tity with magnitude and phase. It is defined as the

coherent sum of the echos from the n scatterers, each
scatterer with its own magnitude, ak, and phase, φk,
and at a distance dk from the observation point. The
radar cross section, σ, is a scalar quantity and repre-
sents the effective area of the target in square metres
and is defined by equation 2.

The model generation process involves first identi-
fying the scatterer locations (1, 2) and then weight-
ing each scatterers amplitude and phase using Least-
Squares Fitting Methods (4, Pages 509–520) to re-
produce the required field. The process can yield
models with large numbers of scatterers. This large
amount of model data can create handling and stor-
age problems, with correspondingly long simulation
times.

If we accept that a measured or calculated field will
never be a perfect representation of the real target (5,
6), small degradations in data fidelity are acceptable.
Therefore, if we remove some of the scatterers in an
n-point model, we should be able to re-adjust the
model to give an approximation to the desired field
pattern. A simple iterative reduction method may
be used that removes each scatter in turn from the n
point model and fits weights to the remaining (n−1)
point model. The scatter whose removal caused the
least error in the new field pattern is discarded. The
process is repeated until the field and therefore the
radar cross section becomes unacceptable.

As RCS is governed by scatterer interactions, the it-
erative method detailed may not always select the
best combination of scatterers. A small scatterer
may have little effect on its own but may be dom-
inant when paired with another similar scatterer.
For a small model with 20 scatterers, there are
220=1048576 possible combinations to search to find
the optimum solution.

An exhaustive search of all possible model combina-
tions in an attempt to find an optimum solution is
often impractical. A Genetic Algorithm (GA) (7, 8)
has been developed in an attempt to identify ef-
ficiently, good combinations of scatterers. Similar
large combinatorial problems exist when attempt-
ing to thin linear arrays. Genetic algorithms have
been applied to this problem area with great success
(9, 10).



OPTIMISATION USING ITERATIVE

REDUCTION

To achieve an optimised model, the required num-
ber of least influential scatterers has to be removed
and the remaining points adjusted in an attempt to
compensate for the loss. The iterative optimisation
method developed is very fast and produces reason-
able reduced models. The Least-Squares Method is
used to fit scatterer amplitude and phase data whilst
keeping the locations fixed. The scatterer that has
the least influence is removed and a new set of coeffi-
cients fitted to compensate for the loss. The process
is repeated, systematically reducing the model. The
mean squared error of the optimised model field pat-
tern compared with the original required pattern is
calculated at each stage by applying equation 3, al-
lowing the effects of the reduction to be monitored
for the current region of optimisation. In equation 3,
ri is the complex field of the optimised model at point
i; gi is the required complex field; N is the number
of data samples and E is a measure of the error.
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OPTIMISATION USING GENETIC

ALGORITHMS

Genetic Algorithms are designed to mimic the natu-
ral selection process through evolution and survival
of the fittest. A population of M independent indi-
viduals is maintained by the algorithm, each individ-
ual representing a potential solution to the problem.
Each individual has one chromosome. This is the ge-
netic description of the solution and may be broken
into n sections called genes . Each gene represent-
ing a single parameter in the problem, therefore a
problem that has five unknowns for example, would
require a chromosome with five genes to describe it.

The three simple operations found in nature, natural
selection, mating and mutation are used to generate
new chromosomes and therefore new potential solu-
tions. Each individuals chromosome is evaluated at
every generation using an objective function that is
able to distinguish good solutions from bad ones and
to score their performance. With each new genera-
tion, some of the old individuals die to make room
for the new, improved offspring. Over several gen-
erations, the majority of the solutions represented
by the individuals in the population will tend to lie
around an optimal solution for a given environment.
The exact rate at which the population converges to
a single solution is determined by the nature of the
problem and the structure of the genetic algorithm.

When used to solve numerical optimisation prob-
lems, genetic algorithms that have a large population
tend to search areas spread across the entire optimi-
sation surface before converging on a maximum or
minimum depending on the problem. Thus, despite
being very simple to code, requiring no directional
or derivative information from the objective func-
tion and being capable of handling large numbers
of parameters simultaneously, genetic algorithms can
achieve excellent results.

ALGORITHM CONSTRUCTION

For a 20-point point scatterer model, a chromosome
with 20 genes has been used to define the model
structure. Each gene can take the values 0 or 1 and
corresponds to a specific scatterer in the model. If
a gene is ’1’, the corresponding scatterer is present
in the model, if it is ’0’, the scatterer is omitted.
Scatterer locations are kept fixed, magnitudes and
phases are fitted to the selected points using the
Least Squares method each time a new individual
is created.

The GA can be described by the following algorithm:

1. Create a population of M individuals, each hav-
ing a chromosome with gene values chosen at
random.

2. Assess the performance of each individual.

3. Rank individuals with respect to performance
and assign a Fitness Value dependent on rank-
ing.

4. Create a set of M parent individuals for breed-
ing where the probability of being included in
the set is proportional to fitness. This may lead
to some individuals being chosen many times
and others not at all.

5. Randomly pair parents and breed to form M

offspring.

6. Randomly mutate some of the genes in the off-
spring chromosomes.

7. Create a random chromosome for any offspring
with null chromosomes (all genes zero).

8. Offspring become new population, assess the
performance of each individual.

9. Record best individual.

10. Repeat from step 3 for required number of gen-
erations.



The performance of each individual is calculated by
first fitting weightings and phases using the Least
Squares Method to the selected scatterers defined by
its chromosome and then generating the N field pat-
tern data samples for the region of optimisation. The
generated and required field patterns are then com-
pared using the cost function previously shown in
equation 3 to give a measure of the error, E.

The genetic algorithm is designed to search for the
best solutions for models with a specific number of
points. This presents us with two objectives, to min-
imise the error, E, and to find a model with a spe-
cific number of scatterers. The algorithm is intended
to be run repeatedly in an attempt to identify the
best solutions for each size of model. These results
will form a Pareto Optimal Set (11, Pages 197–201)
where no single solution is better than any of the oth-
ers when both objectives are taken into account. For
example, models with large numbers of scatterers are
undesirable but have a low error, while small models
tend to have higher error but are more desirable for
processing purposes.

An optimisation method called Goal Attainment
may be used to combine the two requirements into
a single objective for the algorithm to process. If we
are trying to minimise the two functions, the method
works by comparing them to some pre-determined
goals and normalising the results. The maximum of
the two values is then selected as the single objective
to be minimised. This has the effect of pushing the
functions down towards the set goals. The dominant
function is therefore always the one that is propor-
tionally furthest from its goal. The goals are set as
the error, E, and number of scatterers achieved with
the iterative method.

The standard goal attainment function has been
modified in this algorithm to allow the number of
scatterers in the model to be specified more precisely.
An objective value, O(x) is calculated using a modi-
fied goal attainment multi-objective optimisation ap-
proach as shown in equation 4. This will reduce both
the error and size of the model until a model of the
correct size or smaller is found. The objective will
then be based purely on field pattern error if the cor-
rect number of scatterers are present in the model.
The two functions to be minimised are as described
in equation 5. The function C1 is related to the dif-
ference in the modelled and required field patterns
and C2 is related to the number of scatterers in the
model.

O(x) =

{

max(C1(x), C2(x)) , C2(x) > 0
C1(x) , C2(x) ≤ 0

(4)
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In equation 5, E is the error between the modelled
and required field pattern, X (x)j is the jth gene of
the 20-gene chromosome of individual x and G1, G2

are the cost goals that the optimisation is to aim for.

The fitness value F (x) is assigned according to rank
position px of individual x. The individual with the
greatest O(x) (least fit) being assigned a rank posi-
tion of 1 and the best individual being assigned rank
position M . Equation 6 details the calculation of
F (x).

F (x) =
2(px − 1)

M − 1
(6)

A technique called Stochastic Universal Sampling (7,
Page 57) is used to select M individuals at random
from the population for breeding. Each individual
has a probability of selection defined in equation 7.

Prob(x selected) =
F (x)

∑M

i=1 F (i)
(7)

The individuals selected are paired up for breeding.
Which individual pairs with which other is chosen
at random to ensure a good genetic mix. A method
of generating new chromosomes is used called Sin-
gle Point Crossover (7, Page 38). Two new offspring
are generated from each pair of parents by swapping
sections of their chromosomes. A position in one
parents chromosome is randomly chosen, dividing it
into two sections. The second parents chromosome
is then also divided at the same position. The chro-
mosomes of the two parents may now be represented
as the strings of genes [a1 a2] and [b1 b2]. The chro-
mosomes of the two offspring may now be defined as
[a1 b2] and [b1 a2].

The GA is terminated after 100 generations and the
best overall individual is recorded as the solution. A
population of M = 25 individuals was used for the
experiments, therefore giving 2500 objective calcula-
tions for each run of the GA. As there are 20 differ-
ent model sizes, 50,000 objective calculations are re-
quired to generate a set of models, compared to a to-
tal of 209 for the iterative method and 220=1048576
for an exhaustive search. The exhaustive search
method is computationally more expensive for prob-
lems with 16 or more scatterers.

RESULTS

Figure 1 shows the results of the fitting processes
on the RCS as the model is thinned with a ±1◦ re-
gion of optimisation. The comparisons are made us-
ing the Kolmogorov-Smirnov (K–S) statistical test
(4, Pages 472–475) with 800 sample points in each
data set. This test compares cumulative distribution



curves and allows comparisons between the fitting
process over different angular intervals to be com-
pared easily. A ±1◦ angle of interest is chosen for
demonstration purposes as this allows a relatively
small 20-point model to be used. The 5% and 20%
levels of significance (fair and high) have been drawn
on the graph for comparison.

For the iterative method, the K–S values of the
eleven and twelve point models straddle the two
significance levels. The better model (with twelve
points) is chosen as the optimised model. Figure 2
shows the field pattern plots from the twelve point re-
duced model to indicate resulting fidelity. The solid
line denotes the pattern from the twelve point model
while the broken line is the original field.

The Genetic Algorithm performs significantly better.
A fair model may be represented by six scatterers
and a good model by eight, rather than the twelve
point model chosen by the iterative method. The re-
sults are compared against the ideal results generated
by performing an exhaustive search for the 20-point
model. Table 1 summarises the optimisation results.

TABLE 1 - Best Model Sizes For Different
Reduction Methods

No. of Scatterers
K–S Fit Ideal GA Iterative

Fair (K–S < 1.3580) 6 7 12
High (K–S < 1.0727) 7 8 12

CONCLUSIONS

Point scatterer models allow complex RCS patterns
to be recreated quickly and efficiently but fitting real
RCS data to point scatterer models may result in
models with very large numbers of scatterers.

A model with a large number of scatterers may be
optimised by removing the least significant points
and adjusting the weights on the others to compen-
sate for the loss. An iterative optimisation method
where the scatterer that has least effect is removed
at each cycle can provide a quick but crude model
reduction. A Genetic Algorithm has been proposed
that provides superior solutions but at the expense
of increased processing overhead. The computation
time is 1

20 of that required for an exhaustive search
of a 20-point model. Slightly larger models should
not require larger populations or increased numbers
of generations to achieve good results, therefore, for
a 30-point model, the computational effort would be

1
21475 of the exhaustive search, a significant saving.
The optimisation tests suggest that although the the-

oretical minimum number of scatterers needed to
represent a 3-dimensional target is four, a realistic
reproduction of the RCS can be generated with six
or more.
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Figure 1: Comparison of Reduction Methods and Ideal Curve
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Figure 2: Comparison of 12 point model and required field pattern


