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Abstract- As more complex engineering optimisation
problems are being tackled, optimisation algorithms are
being stretched to their limits. The simulations are often
subject to noise and uncertainties, leading to noisy objec-
tive functions and variable evaluation times.

With a noisy objective, it is often very difficult to iden-
tify the best solutions reliably as the noise can cause even
an optimum value to appear ‘good’ rather than ‘excel-
lent’. Bad solutions are often much easier to spot as it
takes a lot of noise to make them appear ‘good’. Thus in
a noisy environment, a strategy of replacing bad solutions
may have an advantage over selecting excellent ones.

A new insertion process has been developed that al-
lows the insertion strategy to be tuned smoothly between
‘greedy’ fitness based insertion and uniform random in-
sertion. This new insertion function allows both the evolu-
tionary processes of selection and insertion to be adjusted
to suit the level of noise and complexity in the objective
calculations.

This paper demonstrates that the insertion and selec-
tion operators can be tuned to suit the level of noise in the
objective to maintain maximum algorithm efficiency and
solution accuracy. Experiments have shown that for some
noisy problems, the insertion process must dominate the
selection operator for maximum efficiency, but the selec-
tion process has a significant effect on the accuracy of the
final solutions.

1 Introduction

Simulations of real engineering systems are often subject to
parameter uncertainties and noise. Detailed simulations are
also often complex and therefore slow to evaluate. Optimis-
ing these systems is slow and difficult because of the noisy
objective functions. Noise may also be added in order to iden-
tify robust solutions to the problems [1].

Many algorithms re-insert new chromosomes into the pop-
ulation using some form of ‘greedy’ operator where the
worst individual in the population is replaced. This operator
tends to suffer with a noisy objective as the population sat-
urates with ‘lucky’ chromosomes where the noise has been
favourable in the objective evaluation [2]. In dynamic situa-
tions such as on-line optimisation, a strategy that replaces the
oldest individual is used [2].

Simulations of real systems often require functions such as

variable step integrators etc. The time required to evaluate the
objective function is often dependent on uncertain parameters
and the trial solution being evaluated. Parallel steady-state
evolutionary algorithms have been shown to be robust to out-
of-order execution of individuals [3] and do not require any
synchronisation processes (see section 2.1).

This paper introduces a new probabilistic insertion oper-
ator that allows the evolutionary effects of insertion to be
controlled. The results demonstrate that in the presence of
noise, the ‘greedy’ insertion process leads to a less efficient
algorithm, and the evolutionary effects of selection need to be
reduced in order to improve algorithm efficiency.

2 Algorithm

2.1 Algorithm Structure

Figure 1 shows the basic structure of the steady-state evo-
lutionary algorithm. A population of p individuals is main-
tained by the algorithm. Each time a processor finishes eval-
uating an individual, the individual is inserted into the pop-
ulation using the method described in section 2.2. A set of
parents are then chosen from the population and used to gen-
erate a new chromosome for evaluation. This child is then
passed to the next processor that becomes available. If there
is no chromosome waiting to be processed when a proces-
sor becomes available (as at startup), a random chromosome
is generated for evaluation. The generation of child chromo-
somes is delayed until a population of p individuals has been
collected. This allows for sufficient random chromosomes to
be generated at startup.
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Figure 1: Asynchronous Parallel EA structure.



If k processors are used, a minimum of p + k − 1 and
maximum of p + k random individuals will be generated, de-
pending on the time taken to evaluate each chromosome and
the process scheduling. As the algorithm is robust to out-of-
order chromosome insertion [3], the approach is ideally suited
to situations where a network of machines with different pro-
cessing powers is available, or the objective function gives
wide differences in evaluation time dependent on the chro-
mosome and the values of noisy parameters. The algorithm
will also tolerate processors joining (a new random chromo-
some would be created) and leaving (a lost evaluation) the
pool of available processing resources at a slow rate.

2.2 Reinsertion and the Probabilistic Cut Operator

Various reinsertion strategies have been developed, but one
of the most often used is replacing the worst individual in the
current population. This is simple to implement and provides
an added evolutionary process alongside selection for breed-
ing. With a noisy objective, the algorithm is ‘greedy’ and
focuses attention on solutions that have been artificially im-
proved by the noise. If a ‘true’ fitness based insertion process
is adopted where the worst individual in the current popula-
tion is only replaced if the new solution is better, the maxi-
mum evolutionary benefit is obtained. Unfortunately, if noise
is present, the ‘true’ fitness based insertion often performs
poorly. Uniform random insertion provides no evolutionary
drive and allows even the best solution found in the popula-
tion to be replaced. This is sometimes referred to as a total
replacement strategy.

Alternatively, instead of viewing the insertion process as
the new individual directly replacing an individual of the pop-
ulation, we may insert the new solution into the (sorted) list
of individuals and then cut an individual from the list to main-
tain a population of p.

Figure 2 shows a plot of the probability density function
for a probabilistic cutting function. The figure corresponds to
equation 1. The function uses the cut pressure α to determine
the shape of the probability density function of the cutting
process for individual i. The cut pressure alters the evolu-
tionary effect of the insertion process in a manner analogous
to selective pressure in the selection process (section 2.3).
This method of generating a selective pressure is effectively
a subset of the cut pressure equation proposed here (see sec-
tion 2.3). The cut pressure equation has been enhanced with
respect to the selection equations by allowing only a subset
of the population to be considered if necessary, in this case,
the subset is of progressively worse individuals.

P (i) =
{

mi + c i > q
0 otherwise (1)

P (i <= x) =
∫ i

q

P (i) di

=
{

mi2

2 + ci− mq2

2 − cq i > q
0 otherwise

(2)

Where

q =
{

0 α < 1/(p + 1)
(p + 1)α− 1 otherwise (3)

m =

{
2α

p+1 α < 1/(p + 1)
2

(p+1−q)2 otherwise (4)

c =
{

1/(p + 1)− α α < 1/(p + 1)
−mq otherwise (5)

With a value of the cut pressure α = 0, the density func-
tion is uniform with a probability of 1/(p + 1) of cutting any
of the individuals in the population (total replacement strat-
egy). With α = 1, the density function is zero for all but the
worst individual, corresponding to ‘true’ fitness based inser-
tion. As the cut pressure is increased from zero, the prob-
ability that the better solutions will be cut reduces to zero,
forming ‘elitist’ types of strategy.
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Figure 2: Variation of probability density function for cutting
individuals (i) from the population as α is varied from 0.0 to
1.0 with p = 9

One of the problems with steady state evolutionary algo-
rithms is premature convergence. In this paper, a process of
removing duplicate solutions was used to improve the pop-
ulation diversity [4]. As trials were performed on problems
with both no noise and noise, a duplicate solution was de-
fined as having the chromosome and the objective values the
same. This definition therefore only operates when no noise is
present on the objective. Thus if the new individual matches
an individual already in the population, the new individual is
discarded. If it is known that there is no noise on the objective
function, only the chromosomes need to be compared and the
test can be made before evaluation to prevent solutions be-
ing discarded unnecessarily after evaluation. If a solution is
discarded rather than being added to the population, the pop-
ulation size will remain at p and therefore no solutions need
to be cut.



The probabilistic cut mechanism may also be applied to
conventional generational evolutionary algorithms by con-
catenating the old population with the new individuals and
then cutting solutions until the desired population size is ob-
tained.

2.3 Selection and Child Generation

After an individual has been inserted into the population (or
not if it was a duplicate), a single chromosome is generated
from the current population for evaluation. Two parents are
selected to form the child chromosome. Each parent is chosen
by first ranking the raw objective values and then calculating
fitness from the rank positions by using equation 6 [5, Chapter
1, section 1.2.2]

F (i) = 2− s + 2(s− 1)
ri − 1
p− 1

(6)

Where s is the selective pressure (1 ≤ s ≤ 2) and ri is the
rank of individual i with the rank p being most fit (1 ≤ ri ≤
p).

The selective pressure, s, allows the evolutionary effect
of selection to be controlled. A value of s = 1 means that
the parents are chosen uniformly with no relation to the rank
positions. A value of s = 2 will give the best individual a
fitness of 2 and the worst a fitness of zero.

Roulette wheel selection is used independently for each
parent with a probability of selection given by equation 7.

P (i) =
F (i)∑p

j=1 F (j)
(7)

In the trials in section 3, real valued chromosomes were
used. The child chromosome, O, was created from the two
parent chromosomes, P1 and P2, using intermediate recom-
bination [5, Chapter 1, section 1.2.4.4] shown in equation 8.

O = P1 + k(P2 −P1) (8)

The vector k is generated at random with values lying in the
range [-0.25, 1.25]. This allows the child chromosome to be
generated somewhere within a hypercube 25% larger than the
hypercube defined with P1 and P2 at opposing corners. The
crossover operator is applied with a probability of 0.9 in the
trials.

After crossover, each of the genes is mutated with a proba-
bility of 0.3. Mutations consist of adding zero mean Gaussian
white noise with a standard deviation, σm, of 1/6 of the to-
tal range of the gene. This corresponds to ±3σm covering
the expected range of the gene, for a gene at the centre of its
range.

3 Example Results

3.1 Test Functions

Two test functions were formulated as maximisation prob-
lems. Both functions have an optimum of 1.0 at point (0, 0)

and many local optima. Both were formulated for a chromo-
some using two real valued genes, each lying in the range
[−10, 10]. Test function 1, described by equation 9 and fig-
ure 3, has a narrow central spike as the global optimum point
and then a series of concentric ridges.
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Figure 3: Test objective surface of equation 9

The gradient of each ridge is zero, giving ‘rings’ of local
optima, rather than discrete points. Zero mean Gaussian noise
(N(0, σ2)), with a standard deviation σ, is effectively applied
to the chromosome before the objective is evaluated. This is
to simulate problems that suffer from internal ‘system’ noise.
The output of the objective function still lies within the range
[0, 1].

O =
(

cos (d2)
1 + d/1000

)2

(9)

d =
√

(x2 + y2) + N(0, σ2)

Test function 2, described by equation 10 and figure 4, has
a central ridge, with very similar ridges on each side. The
ridges are perturbed to make the optimisation more difficult.
Zero mean Gaussian noise is applied to the objective value
after computation to simulate problems where measurement
noise dominates. In this case, the observed objective value
may lie outside of the range [0, 1].

O =


cos

(
x/2 + sin (y/2)2

)

1 +
√

(x2 + y2)/1000




2

+ N(0, σ2) (10)

3.2 Trials

A series of trials were run to assess the effects of α on various
aspects of algorithm performance. The algorithm was coded
using ‘C++’ with parallel Message Passing Interface (MPI)
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Figure 4: Test objective surface of equation 10

protocols. The trials were conducted on Cranfield Univer-
sity’s SGI CRAY Origin 2000 supercomputer.

The following experiments were conducted:

1. α = [0, 1] in 21 steps of 0.05, obj. 1, selective pressure
1.3, applied noise σ = [0, 0.8] in 9 steps of 0.1.

2. α = [0, 1] in 21 steps of 0.05, obj. 1, selective pressure
1.8, applied noise σ = [0, 0.8] in 9 steps of 0.1.

3. α = [0, 1] in 21 steps of 0.05, obj. 2, selective pressure
1.3, applied noise σ = [0, 0.45] in 10 steps of 0.05.

4. α = [0, 1] in 21 steps of 0.05, obj. 2, selective pressure
1.8, applied noise σ = [0, 0.45] in 10 steps of 0.05.

5. Selective pressure= [1, 2] in 11 steps of 0.1, α = 0.5,
obj. 1 with applied noise σ = [0, 0.8] in 9 steps of 0.1,
obj. 2 with applied noise σ = [0, 0.45] in 10 steps of
0.05.

For each trial, 15000 objective calculations were per-
formed with a population size of 200 individuals, mutation
rate of 0.3, crossover rate of 0.9, and one new individual be-
ing generated from each selection cycle. The top 10 individ-
uals (based on objective value) were selected from each trial,
and each trial was repeated 1000 times (with different ran-
dom number sets), giving 10,000 evolved objective locations
for each experiment. Three parameters were monitored for
each experiment:

1. Mean number of iterations of the algorithm to first lo-
cate the objective value

2. Probability that global optimum is found

3. Mean Euclidean difference between true optima loca-
tion and recorded position.

The first two parameters, mean number of iterations (N̄ )
and probability of finding optimum (P (opt)), were com-
bined to give the expected number of evaluations for success
(ENES) using ENES = N̄/P (opt).

3.3 Results

3.3.1 Experiment 1
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Figure 5: Experiment 1. ENES results for test objective 1
with selective pressure of 1.3 for 0 ≤ α ≤ 1 and applied
noise of standard dev. 0 ≤ σ ≤ 0.8.

Figure 5 shows the ENES for the experiment. In the plot,
the values at α = 0.0 are lost as P (opt) is near zero and
therefore the ENES has little meaning as there is little, if any,
chance of finding the true optimum. As the noise is effec-
tively applied to the chromosome before objective evaluation,
the narrow central peak in the objective is moved around by
the noise and becomes easier to find. This accounts for the
ENES traces reducing with increasing noise. For σ = 0.0, i.e.
no noise, values of α in the range [0.3,1] are acceptable for
good ENES performance. In this experiment, a low selective
pressure of 1.3 is used to reduce the effects of the selection
process.

Figure 6 shows the region α in the range [0,0.2] in more
detail (trace corresponding to σ = 0.0 removed for clarity).
It is clear from the plot that the relationship between α and
the applied noise is non-linear. For the higher noise levels, a
value of α = 0.04 is near optimum, although the differences
in ENES are very small.

With a population size of 200, this value of α = 0.04 cor-
responds to having a probability of zero of cutting the top 7
individuals, and an increasing probability of cutting the lower
individuals. This is similar to some total replacement strate-
gies ‘with elitism’, where the whole population is replaced by
the child chromosomes, except for the best individual.



Figure 7 shows the positional errors in where the optimi-
sation process converged, compared to where the true objec-
tive centre was located. As the noise standard deviation, σ,
increased, the mean error also rose as expected. The values
at α = 0.0 are spurious due to the poor performance of the
algorithm at this setting and should be ignored.
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Figure 6: Experiment 1. ENES results for test objective 1
with selective pressure of 1.3 for 0 ≤ α ≤ 0.2 and applied
noise of standard dev. 0.1 ≤ σ ≤ 0.8.
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Figure 7: Experiment 1. Mean error from true objective lo-
cation for test objective 1 with selective pressure of 1.3 for
0 ≤ α ≤ 1 and applied noise of standard dev. 0 ≤ σ ≤ 0.8.

It is clear that the best performance lies in the range α =
[0.2, 0.3], although a difference is only really noticeable at
high noise levels. This region tends to coincide with the areas
of higher ENES where more iterations are needed to find the
optimum, although the changes in ENES are small compared

to the changes in accuracy at the high noise levels.

3.3.2 Experiment 2
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Figure 8: Experiment 2. Expected number of evaluations for
success results for test objective 1 with selective pressure of
1.8 for 0 ≤ α ≤ 1 and applied noise of standard dev. 0 ≤
σ ≤ 0.8.
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Figure 9: Experiment 2. Expected number of evaluations for
success results for test objective 1 with selective pressure of
1.8 for 0 ≤ α ≤ 1 and applied noise of standard dev. 0.1 ≤
σ ≤ 0.8.

In this experiment, a higher value of selective pressure was
used to examine the effects of the probabilistic cut operator
in combination with a significant alternative route for evo-
lution, i.e. selection. Figure 8 shows the ENES plot for the
experiment. It is clear that for the no noise case, σ = 0.0,



the algorithm is more efficient with the higher selective pres-
sure (≈ 36000 for the lower selective pressure, compared to
≈ 27000 for this experiment). It is also noticeable that for the
noisy cases, the performance is slightly worse, although the
difference is very small.
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Figure 10: Experiment 2. Mean error from true objective
location for test objective 1 with selective pressure of 1.8 for
0 ≤ α ≤ 1 and applied noise of standard dev. 0 ≤ σ ≤ 0.8.
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Figure 11: Experiment 3. ENES results for test objective 2
with selective pressure of 1.3 for 0 ≤ α ≤ 1 and applied
noise of standard dev. 0 ≤ σ ≤ 0.45.

Again, figure 9 shows the previous plot with σ = 0.0 re-
moved for clarity and again it is clear that the relationship be-
tween α and the applied noise is non-linear. Figure 10 shows
that the positional errors are only slightly reduced with the
higher selective pressure for this objective. Thus increasing
the selective pressure has reduced the efficiency of the algo-

rithm slightly as expected, but has improved the accuracy of
the final result. This corresponds well with the initial hy-
pothesis that the selection process focuses on improving the
good solutions, whereas the insertion operator removes bad
solutions. Thus in an environment with ‘system’ noise, both
operators need to be controlled.

3.3.3 Experiment 3

Figure 11 shows the ENES results for objective 2 with a low
selective pressure. It is clear that a value of α = 1 is needed
for best performance in the noise free case. As the applied
noise increases, for this objective the noise is being applied
after calculation, the optimum becomes harder to locate and
so the ENES increases.

All the noisy cases for this experiment would benefit from
using α = 0.05. Again the relationship between α and σ is
non-linear, but is also dependent on the objective and noise
characteristics. Figure 12 shows the positional errors. As
expected, the errors increase as the applied noise is increased.
The value of α in the range [0.05,1] has very little influence
on the errors with this objective.
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Figure 12: Experiment 3. Mean error from true objective
location for test objective 2 with selective pressure of 1.3 for
0 ≤ α ≤ 1 and applied noise of standard dev. 0 ≤ σ ≤ 0.45.

3.3.4 Experiment 4

Experiment 3 has been repeated with a selective pressure of
1.8 to establish the influence on the algorithm performance
with objective 2. Figure 13 shows the ENES results for the
experiment. It is clear that the performance in the no noise
case (σ = 0) has been improved significantly, but the perfor-
mance on the noisy cases has changed very little.

Experiment 2 showed a similar result and suggests that
for some noisy cases, the selective pressure has very little ef-
fect on algorithm performance and that the insertion operator



dominates the evolutionary process. This fits well with our
initial hypothesis that the selection process may suffer with
noise.
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Figure 13: Experiment 4. ENES results for test objective 2
with selective pressure of 1.8 for 0 ≤ α ≤ 1 and applied
noise of standard dev. 0 ≤ σ ≤ 0.45.
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Figure 14: Experiment 4. Mean error from true objective
location for test objective 2 with selective pressure of 1.8 for
0 ≤ α ≤ 1 and applied noise of standard dev. 0 ≤ σ ≤ 0.45.

Figure 14 shows the corresponding error plot for the ex-
periment. Again, the change in selective pressure has had
very little effect on the algorithm performance, although for
this objective, the cut pressure, α, has very little effect on
error performance either.

It is interesting to note that with the ‘system’ noise of ob-
jective 1, the objective value still lies in the range [0,1] and
selection is important. With the ‘measurement’ noise of ob-

jective 2, the objective no longer lies within [0,1] and the se-
lection process now has very little influence.

3.3.5 Experiment 5
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Figure 15: Experiment 5. ENES results for test objective 1
with selective pressure in range [1, 2] and with α = 0.5 and
applied noise of standard dev. 0 ≤ σ ≤ 0.8.
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Figure 16: Experiment 5. Mean error from true objective
location for test objective 1 with selective pressure in range
[1, 2] and with α = 0.5 applied noise of standard dev. 0 ≤
σ ≤ 0.8.

To verify the contribution of the selection process further,
in this experiment the selective pressure has been varied from
s = 1, random selection, to s = 2, corresponding to the
worst individual having zero probability of selection. A cut
pressure of α = 0.5 is used. Figure 15 shows the ENES
results for objective 1.



Clearly for the no noise case, increasing the selective pres-
sure improves the algorithm efficiency. Conversely, if noise is
present, a selective pressure of 1 is best, i.e. random selection.

Figure 16 shows that reducing the effect of the selection
operator has a detrimental influence on the accuracy of the fi-
nal solution. Figures 17 & 18 show that for objective two, the
selective pressure had no significant influence on either ENES
or the accuracy of the solutions when noise was present.
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Figure 17: Experiment 5. ENES results for test objective 2
with selective pressure in range [1, 2] and with α = 0.5 and
applied noise of standard dev. 0 ≤ σ ≤ 0.45.

4 Conclusions

This paper has introduced a new insertion process called the
probabilistic cut operator that may be applied to any exist-
ing form of population based evolutionary algorithm and al-
lows the evolutionary effects of the insertion process to be
controlled. The ability of the operator to improve the perfor-
mance of the evolutionary algorithm in the presence of noisy
objectives has been demonstrated.

The algorithm is simple and has been implemented in an
asynchronous parallel evolutionary algorithm and applied to
functions that have similar noise characteristics to real engi-
neering problems.

It has been established that the relationship between the
cut pressure α, the level of noise, the selective pressure, and
the algorithm performance in terms of efficiency and accu-
racy is non-linear and highly dependent on the objective func-
tion characteristics. It has also been demonstrated that with
some noisy objective functions, the insertion process is the
dominant evolutionary operator with parent selection play-
ing only a minor role in determining algorithm efficiency,
whereas the selection process is dominant in terms of the ac-
curacy of the final solution. Both operators need to be ad-
justed to obtain maximum algorithm performance.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.05

0.1

0.15

0.2

0.25

selective pressure

M
ea

n 
er

ro
r 

fr
om

 tr
ue

 o
bj

ec
tiv

e 
lo

ca
tio

n

σ = 0.45

σ = 0.05

σ = 0.0

Figure 18: Experiment 5. Mean error from true objective
location for test objective 2 with selective pressure in range
[1, 2] and with α = 0.5 applied noise of standard dev. 0 ≤
σ ≤ 0.45.
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