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Abstract-
Many real world problems are constrained and have

multiple objectives that must be satisfied. To compound
the optimisation challenge, systems are often noisy or un-
certain, leading to errors in the objective calculations.
This paper develops theory to help reduce the effects of
noise and uncertainty on constrained evolutionary opti-
misation processes. Experimental results are presented
for generating Pareto surfaces with two different types of
noise and also with constraints and designer preferences.

1 Introduction

Many practical problems have multiple objectives and are
subject to constraints. Evolutionary methods have been
shown [1] to be robust to noise in the optimisation process.

This robustness to errors has also been exploited by artifi-
cially adding noise to the objectives in an attempt to identify
solutions that are robust to noise and uncertainty in the real
system [2, 3, 4]. Noise is also often present when trying to
optimise hardware systems such as in robotics. Noise or un-
certainty in the objectives tend to slow evolution and reduce
solution quality.

Attempts to reduce noise by repeating objective calcula-
tions and then averaging or combining results have been tried,
but often with many realistic problems, the time to re-evaluate
is prohibitive and often the number of samples used to aver-
age must be very small and therefore subject to considerable
error. Most evolutionary algorithms to date have accepted
these problems as the robustness of the algorithms allows
small errors to be tolerated.

Therefore we may form two categories of problem:
� Noisy: Two successive evaluations of the same chro-

mosome information return two different sets of objec-
tives.

� Uncertain: Two successive evaluations of the same
chromosome return the same objective values, but
when comparing two different chromosomes, errors
and approximations in the modelling may cause the ob-
jective values returned to classify the wrong solution as
being superior.

Many engineering problems however may be both noisy and
uncertain.

In the paper, section 2 establishes the theory for compar-
ing two fitness measurements and section 3 details the new
ranking process. Section 4 discusses how constraints and

preferences may be applied, and section 5 gives the results
of experiments to demonstrate the new algorithm. Section 6
concludes.

2 Comparing Objective Measurements

The fundamental operation in evolutionary algorithms is
comparing two sets of objective measurements to see which
solution is better. For simplicity, if the measurements are cor-
rupted with zero mean Gaussian noise, we need to be able to
assess the probability of the decision being correct.

One approach is to recognise that the difference between
two Gaussian distributions is also Gaussian but with a mean
value that is the difference between the means of the two dis-
tributions and a variance which is a sum of the two variances
(Cramer’s Theorem), i.e.,
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If A dominates B in a maximisation sense, then the area
under the resulting curve from zero to infinity will give the
probability that the decision that A dominates B is correct. If
we normalise B to give
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2.1 Numerical Approximation of Probability

If we cannot afford to do multiple evaluations for each chro-
mosome (often the case), we can choose a random chro-
mosome before running the EA and perform multiple eval-
uations to estimate the noise standard deviation (and possi-
bly noise distribution). If the noise statistics are known to
be nonlinear, it may be advantageous to either re-estimate



the statistics every few generations from an average chromo-
some, or even from the current population. When the same
standard deviation is used for comparing two objective val-
ues, �n = �a = �b therefore s = 1. Thus the probability is
only determined by the value of m.

As the case of s = 1 is likely to be the most commonly
used, we can tailor the equations specifically. Thus the prob-
ability of sample A dominating sample B in maximisation
(P (A > B)) is

P (A > B) =
1

2
+

1

2
erf (

m

2
)

=
1

2
+

1

2
erf (

A�B

2�n
) ; (6)

therefore if A = 0, B = 5 and �n = 1, P (A > B) = 0 as
expected.

Unfortunately, the error function erf (x) is not easy to cal-
culate quickly. Recognising that (5) is sigmoidal in shape,
other standard sigmoidal curves have been fitted to give a
good approximation to the curve, but allow the probability
to be calculated quickly. Figure 1 shows the curve approxi-
mation and (7) & (8) show the equations. The results of the
two different approximations are so similar to each other, they
appear as a single line on the graph.
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Figure 1: Approximation of P (A > B) against m, dashed
curve is (5)

The small errors in the approximation can be tolerated as a
tradeoff for the speed gain. Further improvements in calcula-
tion speed may be obtained for certain problems by utilising
the decomposition of tanh(A + B). This is detailed in [5].

Table 1: Ranks of example fitness values
Value A B C D E F G

Rank 0 1 2 2 4 5 6

In practice, setting �n = 0 will give a divide by zero error, so
this case must be trapped and with double precision numbers,
�n = 1E � 10 is a good substitute.

If we have two, k objective, independent fitness measure-
ments with corresponding objective values A1 : : : Ak , and
B1 : : : Bk, the probabilities P (A < B), P (A > B), and
non-domination or equivalence (P (A � B)) are simply

P (A < B) =

kY
j=1

P (Aj < Bj)

P (A > B) =

kY
j=1

P (Aj > Bj) =

kY
j=1

(1� P (Aj < Bj))

P (A � B) = 1� P (A < B)� P (A > B) : (9)

3 Probabilistic Ranking and Selection

3.1 Introduction

Ranking is often employed to prevent a superior solution
dominating the early populations in the evolutionary process.
The conventional ranking process, however, does not take the
uncertainty in the measured fitness values into account. The
following sections provide a fresh view of the ranking process
and develop theory for multi-objective ranking of uncertain
fitness measurements.

3.2 Single Objective Ranking

A C/D E F GB

4 5 62 71 3
x

Figure 2: Fitness values to be ranked

Figure 2 shows seven fitness values to be ranked. If we
are minimising, the best fitness value is the lowest. In the
case shown, value A will get rank 0, and value G will be rank
6. Values C and D are equal and therefore should be assigned
the same rank. We can assign rank values as shown in Table 1.

If we did not have a tie between C & D, we could use
the linear selection equation (10) to calculate probabilities
of selection, based on the ranked fitness, where n is the
number of fitness values and Ri is the rank of individual i.
The sum of the rank values on the denominator will sum to



n(n � 1)=2 = 21 which is the sum of the arithmetic series
zero to six, therefore the best individual will get a probability
of selection of 2=n and the worst a probability of zero.

P (selecti) =
(n� 1)�RiP

n

j=1 Rj

=
2((n� 1)�Ri)

n(n� 1)
(10)

If we use the rank values in Table 1 with both the tied
fitness values being given the best ‘untied’ rank, we find that
the sum of the ranks is no longer consistent, and in this case,P

n

j=1 Rj = 20. Alternatively, as C & D are tied, it may
be better to penalise them both a little and therefore take an
average of the rank positions they could have shared, i.e., give
them both a rank of 2:5. This would return the overall sum
to be 21 and would be consistent, no matter how many fitness
values share a rank. This is the method most used for ranking
a vector of data.

We can view the ranking process as counting the number
of fitnesses that dominate the fitness of interest [6]. If a fit-
ness equal to the current one is encountered, then it is half
dominating, and half dominated by the current fitness value.
Therefore we can create the rank position numbers by this
simple counting process. For example, E is dominated by A,
B, C & D and therefore has a rank of 4. Value C is dominated
by A & B but is tied with D and so gets a rank of 2:5.

Alternatively, we could consider the dominating / not
dominating decision as being the probability that each fitness
value dominates the value of interest. For example, if we con-
sider fitness C, the probability that A dominates C is one. The
probability that G dominates C is zero. The probability that
D dominates C, from (5) with m = 0, is P = 0:5. Thus
we can represent the rank position as the sum of probabilities
of domination as shown in (11), where P (Fj > Fi) is the
probability that fitness value j dominates fitness value i.

Ri =

nX
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P (Fj > Fi)

������
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In (11), we have to be sure not to compare fitness Fi with
itself. If we did, we would get an extra probability of 0:5
added to the sum. We can therefore include Fi in the sum, but
subtract the effect of comparing the fitness with itself. This is
shown in (12).

Ri =

nX
j=1

P (Fj > Fi)� 0:5 (12)

As (12) is based on probability, if the fitness values are
uncertain, we can use (5) or the approximations (7) & (8)
to calculate the probability of domination. For example, if
fitness values A to G have a standard deviation of �n = 1, the
rank positions (using (7)) compared to the no noise case are
shown in Table 2.

With �n = 0, we have conventional ranking and the prob-
abilities will range from 2=n to zero. If �n = 1, all of the
fitness values will be assigned the same rank, and will have a
probability of selection of 1=n.

Table 2: Ranks with uncertainty of �n = 0 and �n = 1
Value Rank (�n = 0) Rank (�n = 1)

A 0 0.38
B 1 1.27
C 2.5 2.31
D 2.5 2.31
E 4 4.17
F 5 5.07
G 6 5.49

3.3 Multi-Objective Ranking

With multiple objectives, we now have three possible out-
comes from comparing the two fitness values: A dominates
B, A is dominated by B, and A and B are non-dominated.
If we apply the single objective ranking equation, we find
that the total of the rank positions is no longer n(n � 1)=2
as we now have to account for the non-domination. If we
have no noise, for two fitness values, where A dominates B,
P (A > B) = 1, P (A < B) = 0, and P (A � B) = 0
Therefore when we sum the probabilities of domination, the
contribution from this pair will be 1. If the fitness val-
ues are non-dominated, the corresponding probabilities are
P (A > B) = 0, P (A < B) = 0, and P (A � B) = 1. We
have now lost the value 1 from the probability of domination
calculations, therefore reducing the sum of ranks total. This
state will be the same when we compare A to B and when we
compare B to A, therefore if we sum the total probability of
non-domination, this will give us twice what was lost from
the rank calculations.

If we consider the ranking case for a single dimension, if
A and B are identical, we cannot choose between them and
so add in 0.5 to the sum. With non-domination, we also have
the situation where we cannot choose between objectives and
should therefore add 0.5 to the sum as required. In the case of
uncertain measurements, we can multiply the value of 0:5 by
the probability of non-domination, and still subtract off 0:5 to
allow for comparing the individual with itself, thereby main-
taining the sum of the rank positions as n(n� 1)=2. Thus we
can add the non-domination term into (12). The rank calcula-
tion for multi-objective ranking is shown in (13), where n is
the number of fitness measurements.

Ri =

nX
j=1

P (Fj > Fi) +
1

2

nX
j=1

P (Fj � Fi)� 0:5 (13)

This probabilistic ranking equation allows chromosomes
to be selected based on uncertain multi-objective fitness mea-
surements. For the objectives shown in Fig. 3, we can cal-
culate the rankings in order to minimise the fitness values.
Table 3 shows ranks (R) for no noise, and one standard devi-
ation noise.

In the example, we see that A is non-dominated with B,
C, D, & E and therefore gets a rank of 2. Fitness B is non-



Table 3: Ranks with uncertainty of �n = 0 and �n = 1
Value R (�n = 0) R (�n = 1)

A 2 2.27
B 1.75 1.65
C 1.5 1.42
D 1.5 1.92
E 3.25 3.22
F 5.0 4.53

dominated with A, C, & D but shares an objective value with
E, thus being half dominating and half non-dominated with
E, the rank of B is 1:5 from the three non-dominated points
and 0:25 from E, giving a total of 1:75. We also see that each
of the columns of Table 3 sums to 15 (= n(n � 1)=2 ) as
expected. The ranking process is O(n2), as are many of the
other ranking methods [6, 7].
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Figure 3: Multiple fitness values to be ranked

In the general noisy scenario, we see that the proximity of
other fitness values, even if only close on one objective, can
influence how the rank is assigned. Measurements such as
C which are relatively well spaced out on all objectives are
ranked more highly than other fitness values that are uncer-
tain. With no noise, the basic ranking by just counting how
many points dominate each fitness measurement described
by Fonseca and Flemming [6] is very similar, but does not
allow for the non-dominated cases. The sum of the rank
values will not be consistent if non-dominated solutions are
present, causing a bias towards non-dominated solutions over
other solutions. The ranking used by Srinivnas and Deb [7]
is based on ‘layers’ of non-dominated solutions and has no
consistency with regards to how many layers, or ranks, are
produced, therefore making calculating selection probabili-
ties awkward.

It is interesting to note that if we require an objective to
be maximised, setting �n negative will cause the probabili-

ties to be calculated for maximisation. Setting �n negative
has the same effect as negating the fitness values (the con-
ventional way of converting from minimisation to maximi-
sation). Therefore both minimisation and maximisation ob-
jectives may be handled easily by just setting the sign of the
corresponding value of �n appropriately.

A comparison of the effects of noise on MOGA [6],
NSGA [7], and these new ranking equations is given in [8].
These results show that NSGA performs badly in the pres-
ence of noise, whereas MOGA and the new equations are
much better. By increasing the values of �n appropriately for
the objectives, the new technique can give more stable results
than both NSGA and MOGA.

4 Designer Preference and Constraints

4.1 Introduction

For optimising real systems, allowing the designer to have in-
teractive control over the evolutionary process is paramount.
The designer will often want to confine the region of evolu-
tion in order to investigate an interesting region in detail and
may also want to mark some objectives as being a higher pri-
ority. A simple approach to defining regions of interest is to
allow the designer to specify a limit on each objective. Solu-
tions with a corresponding value worse than the limit would
be penalised. Problem parameters are also often constrained.
With a single objective it is straight forward to add a penalty
function that adds to the objective value if the parameters
are out of bounds. In a multiple objective case, as the rela-
tive scalings between the objectives is not known, applying a
penalty is less straight forward. The designer may also want
to focus attention on certain solutions, in the case of a noisy
function, the objective values will be time dependent. For a
discussion of other Pareto preference techniques see [9].

4.2 Parameter Constraints and Objective Limits

The parameters defining potential problem solutions often
have regions within which they must be constrained. Deb [10]
provides a discussion on the different methods used to apply
constraints in EA’s. If possible, the constraints should be han-
dled by the genotypic / phenotypic description to help prevent
the production of fatal solutions. To describe the constraint,
we can define a function G(�i) as being unity if the chromo-
some �i is wholly within a constrained region (assuming no
noise or uncertainty) and zero if a constraint is violated. If
the individual constraints are formulated as gj(�i) � 0, we
can define an error metric as �ji = gj(�i) and use (6) with
the constraint noise standard deviation �c to give

Gj(�i) =
1

2
+

1

2
erf (

��ji
2�c

) : (14)

Multiple constraints may be combined either by forming
the product (15) of the u constraints, or by taking the geomet-
rical mean (16). It is prudent not to constrain the problem too



highly in the early generations if possible to allow the evolu-
tionary process to work with the greatest number of feasible
solutions possible.

G =

uY
j=1

Gj (15)

G = u

p
G1G2 � � � Gu (16)

Limits on the objectives may be applied by treating the
k limits as forming a point Z in the k dimensional objec-
tive space. The probability of each individual dominating this
point can be calculated (P (Fi > Z)) and this probability can
then be multiplied with the parameter constraint value G(�i)
to give C(�i).

We can apply the constraint easily to the previously de-
veloped ranking process by applying the logic of: if both
chromosomes meet all constraints, the dominance probabil-
ities are unchanged; If both violate the constraints, they are
classed as being non-dominated; if one violates constraints
and the other does not, the violating chromosome is classed
as being dominated.

Equation 17 shows the logic expressed in a form suitable
for noisy systems.

Pc(A > B) = P (A > B)C(A)C(B) + C(A)(1� C(B))

Pc(A < B) = P (A < B)C(A)C(B) + (1� C(A))C(B)

Pc(A � B) = 1� Pc(A > B)� Pc(A < B) (17)

The probabilities after the constraints have been applied may
be used directly in the ranking calculation shown in (13).

With this method of applying the constraints, the sum of
the ranks is preserved, compared to an alternative technique
where the reversed rank of individual i is multiplied byC(�i)
to give C(�x)((n� 1)�Ri), i.e., the constraints are applied
to the ranked values. Thus a solution with good objective
values that violates constraints will get a low probability of
selection. With this alternative approach the sum of the ranks
may not be n(n � 1)=2 anymore. With either technique, by
modifying the rank position, objective scaling differences are
no longer a problem. This approach allows the designer to
specify limits on the evolution interactively as the population
evolves. Sharing may also be applied and the niche count
used to reduce C(�i) accordingly, i.e. Cs(�i) = C(�i)=s,
where s is the niche count for the individual. This is detailed
in [5].

4.3 Priority

If we have an objective with a priority of zero, it should play
no part whatsoever in the ranking process. Equation 18 shows
equations to allow the priorities �j for each objective j to be
integrated into the ranking process. The priorities �j lie in
the interval [0,1] with 1 being the highest priority and zero
making the objective play no part in the ranking. In (18), the
factor h will be zero if all of the priorities are zero. This will

force all solutions to be non-dominated and so have an equal
probability of selection.

h =

0
@1�

kY
j=1

(1� �j)

1
A

Pp(A > B) = h

kY
j=1

(Pc(Aj > Bj)�j + (1� �j))

Pp(A < B) = h

kY
j=1

(Pc(Aj < Bj)�j + (1� �j)) (18)

As the priority calculation is performed as part of the
Pareto ranking process, the consistency in the sum of the
ranks is maintained. Equation 18 can be used in place of (9)
in calculating the domination probabilities. This elegant in-
tegrated approach to priority and constraint gives full control
to the designer.
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Figure 4: MOP2 objective space. No noise, Limits [0.7 0.9],
No preference

5 Experimental Demonstrations

5.1 Introduction

The following graphs demonstrate the effectiveness of the
ranking equations under the conditions of:

� Limits on objectives.

� Objective priority.

� Parameter constraints.
Noise and uncertainty can be split into two broad cate-

gories relating to noise that occurs within the process (Type
A) and measurement noise (Type B):

� Type A Noise: Noise is applied to the chromosome
before the objective function is calculated, i.e. O =
F (�+N).



� Type B Noise: Noise is applied to the objective func-
tion after calculation, i.e. O = F (�) +N .
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Figure 5: MOP2 objective space. Noise � = 0:1, Type A,
�n = 0:1, Limits [0.7 0.9], No preference

Both types of noise are of interest and often the observed
noise will be a combination of type A and B. A range of test
objectives were developed for the trials. Table 4 lists the ob-
jective functions used, with either type A or type B noise as
appropriate.
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Figure 6: MOP2 objective space. Noise � = 0:1, Type B,
�n = 0:1, Limits [0.7 0.9], No preference

The evolutionary algorithm used was a simple structure
with selection, crossover, and mutation. A population of
100 individuals was used with chromosomes consisting of
two real-valued genes with values lying in the range [0,1].
Stochastic universal sampling was used to select individuals
for breeding and then intermediate crossover at a rate of 70%

and uniformly distributed mutation at a rate of 10% were ap-
plied to generate new individuals. The best 70% were in-
serted back into the population. The plots shown were all
taken after 50 generations.

5.2 Objective Limits

Figure 4 shows the effect of applying the limits [0.7 0.9] to
objectives f1 and f2 respectively with �n = 0 used to give
a rapid transition from constrained to unconstrained. The al-
gorithm has identified the Pareto set within the constrained
region easily.
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Figure 7: MOP2 objective space. No noise, No limits, Pref-
erence [0.9 1.0], Sharing 0.005 on objectives
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Figure 8: MOP2 objective space. No noise, No limits, Pref-
erence [0.5 1.0], Sharing 0.005 on objectives

Figure 5 shows how the ranking process copes with signif-
icant type A noise. The chromosome values have been per-



Table 4: Objective Functions
Objective Definition Input

MOP2 [11]
f1 = 1� exp
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i=1

�
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n

�2
!

f2 = 1� exp
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nX
i=1

�
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(19)

xi = 4�(i)� 2

CON1 f1 = 1:0

f2 = 1:0

0:01 � (x� 0:5)2 + (y � 0:5)2 (20)

x = �(1)

y = �(2)

CON2 [11] f1 = x

f2 = y

0 � �(x)2 �(y)2 + 1 + 0:1 cos

�
16 arctan

�
x

y

��
0:5 � (x� 0:5)2 + (y � 0:5)2 (21)

x = � �(1)

y = � �(2)

turbed, leading to a smaller region in the chromosome space
being responsible for the spread of objective values seen. De-
spite the noise, the search is still focussed in the required re-
gion.

Figure 6 shows the effect of type B noise. Here the objec-
tive value itself has been perturbed. Again the chromosomes
occupy a smaller region, with the perturbed objective values
still being focussed. By focusing the objectives, the spread
of chromosomes is also reduced. With noisy objectives, if
the objectives are constrained too much, there may be no sin-
gle chromosome that will always have a perturbed solution
within the constrained region. This can cause problems with
genetic drift and loss of diversity within the population.

5.3 Objective Preference

Often with multiple objectives, not all the objectives are of
equal interest to the designer. For example, in a cost / perfor-
mance tradeoff, if very high volumes are to be manufactured,
the cost is often paramount.

Figure 7 shows the function MOP2 without noise or ob-
jective limits but with the priorities [0.9 1.0] specified for ob-
jectives f1 and f2 respectively. As the objectives are min-
imised, preferred solutions are better on f2 and therefore will
be worse on f1 and so will tend to lie towards the bottom right
of the plot. A small amount of sharing has been applied to re-
duce genetic drift. This has caused the Pareto front to smear
as the sharing is applied to all individuals, rather than within
Pareto layers. It is clear that f2 is dominating the results as
indicated by the preference vector.

Figure 8 shows the effect of a preference vector [0.5 1.0].
Here f1 is penalised further. If the vector [0 1.0] was used,
only f2 would have any influence on the ranking process. The
priority vector allows priority information to be used within

the Pareto ranking process by indicating the relative merit of
each objective. In this approach to priority control, if all the
elements of the priority vector are unity, a full Pareto surface
can be generated.
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Figure 9: CONS1 chromosome space

5.4 Chromosome Constraints

Figure 9 shows the chromosome locations for the problem
CONS1, along with the boundary of the constrained region.
Both objective values always equal unity and therefore only
the constraints have any effect. A constraint spread of �c = 0
was used to cause a hard transistion. It is clear that the
algorithm quickly converges to the constrained region and



demonstrates the effectiveness of this integrated approach
over penalty methods. In problems of this type, it would be
advisable to use sharing on the chromosome positions to try
to reduce the effects of genetic drift.

Figure 10 shows the non-dominated boundary of the
CONS2 function. Again hard constraints were generated.
The discontinuous objective surface can be seen clearly.
The handling of the constraints as part of the ranking pro-
cess treats solutions that do not satisfy constraints as non-
dominated, and so share rank positions. This reduces the rank
value and effective selective pressure of the individuals, al-
lowing the solutions that satisfy the constraints to dominate.
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Figure 10: CONS2 Objective space

6 Conclusions

The integrated ranking, constraint, and priority equations that
have been developed form a first step towards evolutionary
algorithms that can address the problems of noisy objective
functions directly. By integrating the constraints and prior-
ities into the ranking, the rank values maintain their consis-
tency and allow selection probabilities to be calculated easily.

The new ranking, constraint, and preference equations are
simple functions, unlike many existing ranking processes that
are based on logical decisions and are difficult to manipulate
mathematically. This may help in the analysis of algorithm
operation in the future. By reducing the effects of the noise on
the rank positions, the evolutionary process is more stable and
with the inclusion of constraints and preferences, allows the
designer full interactive control over the evolutionary process.
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