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Abstract. Real engineering optimisation problems are often subject to

parameters whose values are uncertain or have noisy objective functions.

Techniques such as adding small amounts of noise in order to identify ro-

bust solutions are also used. The process used in evolutionary algorithms

to decide which solutions are better than others do not account for these

uncertainties and rely on the inherent robustness of the evolutionary

approach in order to �nd solutions.

In this paper, the ranking process needed to provide probabilities of selec-

tion is re-formulated to begin to account for the uncertainties and noise

present in the system being optimised. Both single and multi-objective

systems are considered for rank-based evolutionary algorithms.

The technique is shown to be e�ective in reducing the disturbances to

the evolutionary algorithm caused by noise in the objective function,

and provides a simple mathematical basis for describing the ranking and

selection process of multi-objective and uncertain data.

1 Introduction

The use of evolutionary algorithms (EA's) in engineering is now well established

and widespread. As the use of the algorithms migrates deeper into industry,

and with more processing power available, the scale and characteristics of the

problems being solved are changing. The objective functions are becoming more

complex, nonlinear and often uncertain. Many model coe�cients are derived by

experiment and are therefore subject to experimental errors. In real systems, the

true coe�cients will not be the same as measured and are often time dependent

or correlated with platform motion etc.

These errors in the modelling are unavoidable and inevitably propagate into

the outputs of the objective functions, the results of which are used to classify the

quality of the individual solutions to the problem. All optimisation algorithms

attempt to �nd the problem solution that gives the most favourable output from

the objective functions. With complex systems, evolutionary algorithms are a

useful tool in that they can tolerate highly nonlinear and noisy system models

and objective functions and still provide reasonable suggested solutions [1].



This robustness to errors has also been exploited by arti�cially adding noise

to the objectives in an attempt to identify solutions that are robust to noise

and uncertainty in the real system [2{4]. Noise is also often present when trying

to optimise hardware systems such as in robotics. Noise or uncertainty in the

objectives tend to slow evolution and reduce solution quality.

Attempts to reduce noise by repeating objective calculations and then av-

eraging or combining results have been tried [5], but often with many realistic

problems, the time to re-evaluate is prohibitive and often the number of sam-

ples used to average must be very small and therefore subject to considerable

error. Most evolutionary algorithms to date have accepted these problems as the

robustness of the algorithms allows small errors to be tolerated.

Therefore we may form two categories of problem:

1. Noisy: Two successive evaluations of the same chromosome information

return two di�erent sets of objectives.

2. Uncertain: Two successive evaluations of the same chromosome return the

same objective values, but when comparing two di�erent chromosomes, er-

rors in the modelling and model coe�cients may cause the objective values

returned to classify the wrong solution as being superior.

This paper takes a fresh look at the problems of uncertain and noisy systems,

both with single and multiple objectives, in order to provide a selection process

that is aware of the uncertainties and noise. The techniques discussed form a

small step towards creating algorithms that can address the problems associated

with the di�erent categories of noisy or uncertain problems.

2 Problem De�nition

As most engineering problems have multiple objectives that must be satis�ed,

the work concentrates on multi-objective evolutionary algorithms (MOEA). Car-

los Coello Coello maintains an excellent database of publications relating to

multi-objective optimisation [6]. Many of the publications tackling engineering

problems (e.g. [7]) use techniques such as MOGA [8] and NSGA [9]. These meth-

ods use ranking techniques to address the problems of non-domination, then use

sharing to spread the solutions across the objective surface. The use of ranking

is widespread in EA's to prevent good solutions taking over the population in

the early generations of the algorithm. Van Veldhuizen and Lamont [10] have

studied the bene�ts / disadvantages of a number of techniques, including MOGA

and NSGA, and begun to de�ne techniques for assessing MOEA performance.

These have been developed in the context of noise-free and certain problems and

similar work is needed to address noisy and uncertain problems but is beyond

the scope of this paper.

In all evolutionary algorithms, the key medium to evolution is being able

to take two potential solutions to a problem, test them in the problem domain

against some performance criteria, then given some values relating to the per-

formance of each, decide which solution is better than the other. With noisy or



uncertain problems, we �nd that given the results of the performance criteria,

unless they are very di�erent, we cannot say for certain which solution is better.

Thus we must now refer to the probability that one solution is better than the

other. This paper aims to review the process needed in order rank a set of ob-

jective results, given that we can no longer make a crisp decision about solution

superiority.

3 Comparing Two Uncertain Fitness Measurements

3.1 Introduction

In a noise free situation, if we have two �tness values, A and B, and are try-

ing to minimise, the lower value is always superior. However, if we know the

�tness values are subject to noise, even if the measured �tness A is less than

the measured �tness B, the expected value of the distribution from which A is

drawn may be greater than the expected value of the distribution from which

B is drawn. Therefore we would make the wrong decision. In the presence of

noise, if we choose the simple case of take the best measured objective, we need

to quantify the probability that we have made the wrong decision.

3.2 Analysis of Distributions With Unknown Expected Values

If we have a pair of samples from distributions with known characteristics and

spread, but unknown expected values, we need to be able to calculate the prob-

ability that although sample A is less than sample B say, the expected value of

distribution B is less than the expected value of distribution A. This will give

us a probability of making the wrong decision. Figure 1 shows a scenario with

two Gaussian distributions.

Here A and B are the measurements that were observed, and � is an arbitrary

point. The observed value A was less than B and is therefore superior. If the

expected value of A was actually at point �, the expected value of B would have

to be in any position to the left of � for us to make the wrong decision. We

can calculate the probability of the distributions being in this location as the

probability of value A occurring, given �

a

, multiplied by the probability that �

b

is less than �

a

, shown as the shaded region on Fig. 1. This may be described

mathematically as
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Equation 3 has the limits on the inner integration adjusted, as the Gaussian

distribution is symmetrical pdf(a) = pdf(�a) and cdf(a;1) = cdf(�1;�a). The
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Fig. 1. Choice between two noisy values

axis is shifted to make sample point B = 0 then distribution B is normalised,

modifying distribution A accordingly. Equation 4 has been simpli�ed with the

replacements m =

(A�B)
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We may now use the error function

erf (x) =

2

p
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to give
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Unfortunately (6) is di�cult to integrate directly. An alternative approach

is to recognise that the di�erence between two Gaussian distributions is also



Gaussian but with an expected value that is the di�erence between the expected

values of the two distributions and a variance which is a sum of the two variances

(Cramer's Theorem), i.e.,
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If A dominates B in a minimisation sense, then the area under the resulting

curve from zero to in�nity will give the probability that the decision that A

dominates B is wrong. If we normalise B to give
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then the probability of being wrong is
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Equation 11 can be shown to be equal to (6) by numerical integration.

3.3 Numerical Approximation of Probability

If we cannot a�ord to do multiple evaluations for each chromosome (often the

case), we can choose a random chromosome before running the EA and perform

multiple evaluations to estimate the noise standard deviation (and possibly noise

distribution). This estimate may be used subsequently for all the comparisons

of individual samples using the equations in section 3.2. If the noise statistics

are known to be nonlinear, it may be advantageous to either re-estimate the

statistics every few generations from an average chromosome, or even from the

current population. When the same standard deviation is used for comparing

two objective values, �

a

= �

b

therefore s = 1. Thus the probability is only

determined by the value of m.

As the case of s = 1 is likely to be the most commonly used, we can tailor

the equations speci�cally. The equations are calculated as the probability of

being wrong in minimisation, this is the same as the probability of acceptance

in maximisation. Thus the probability of sample A dominating sample B in

maximisation (P (A > B)) is

P (A > B) =

1

2

+

1

2

erf (
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2

)
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2
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2
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) ; (12)

therefore if A = 0, B = 5 and � = 1, P (A > B) = 0 as expected.



Unfortunately, the error function erf (x) is not easy to calculate quickly. It can

be approximated using Chebyshev �tting [11, Section 6.2] but even this is not

very quick. Recognising that (11) is sigmoidal in shape, other standard sigmoidal

curves have been �tted to give a good approximation to the curve, but allow the

probability to be calculated quickly. Figure 2 shows the curve approximation and

(13) & (14) show the equations. The results of the two di�erent approximations

are so similar to each other, they appear as a single line on the graph.
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Fig. 2. Approximation of P (A > B) against m, dashed curve is (11)

The small errors in the approximation can be tolerated as a tradeo� for

the speed gain. Further improvements in calculation speed may be obtained for

certain problems by utilising the decomposition of tanh(A+B). This is detailed

in [12].

3.4 Multi-Objective Fitness Functions

With multiple objectives, we no longer have only two possible outcomes from

comparing two objectives A and B. We now have the possibility of the two



objectives being non-dominated. We therefore can have P (A < B), P (A > B),

and P (A � B) (A is equivalent to B in Pareto optimal sense). Figure 3 shows

the e�ect graphically, with the point A in the centre of the �gure ([0:5; 0:5])

representing one sample of the �tness. The shaded regions correspond to regions

in which there is information to drive the evolutionary process, i.e. A is either

dominates or is dominated by any point x that lies in the shaded region. In the

remaining regions, any point x will be non-dominated when compared to point

A and we have no way of deciding between the points. For the ranking process,

the points are equivalent, and just as good as each other.

If we have two, k objective, independent �tness measurements with corre-

sponding objective values A

1

: : : A

k

, and B

1

: : : B

k

, the probabilities P (A < B),

P (A > B), and P (A � B) are simply

P (A < B) =
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Y
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P (A � B) = 1� P (A < B)� P (A > B) : (18)

4 Probabilistic Ranking and Selection

4.1 Introduction

Ranking is often employed to prevent a superior solution dominating the early

populations in the evolutionary process. The conventional ranking process, how-

ever, does not take the uncertainty in the measured �tness values into account.

The following sections provide a fresh view of the ranking process and develop

theory for multi-objective ranking of uncertain �tness measurements.

4.2 Single Objective Ranking

Figure 4 shows seven �tness values to be ranked. If we are minimising, the best

�tness value is the lowest. In the case shown, value A will get rank 0, and value

G will be rank 6. Values C and D are equal and therefore should be assigned

the same rank. We can assign rank values as shown in Table 1

If we did not have a tie between C & D , we could use linear selection (19) to

calculate probabilities of selection, based on the ranked �tness, where n is the

number of �tness values and R

i

is the rank of individual i. The sum of the rank

values on the denominator will sum to n(n� 1)=2 = 21 which is the sum of the
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Table 1. Ranks of example �tness values

Value A B C D E F G

Rank 0 1 2 2 4 5 6



arithmetic series zero to six, therefore the best individual will get a probability

of selection of 2=n and the worst a probability of zero.

P (select

i
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(n� 1)�R

i

P

n
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2((n� 1)�R

i

)

n(n� 1)

(19)

If we use the rank values in Table 1 with both the tied �tness values being

given the best `untied' rank, we �nd that the sum of the ranks is no longer

consistent, and in this case,

P

n

j=1

R

j

= 20. Alternatively, as C & D are tied, it

may be better to penalise them both a little and therefore take an average of the

rank positions they could have shared, i.e., give them both a rank of 2:5. This

would return the overall sum to be 21 and would be consistent, no matter how

many �tness values share a rank. This is the method most used for ranking a

vector of data.

We can view the ranking process as counting the number of �tnesses that

dominate the �tness of interest [8]. If a �tness equal to the current one is en-

countered, then it is half dominating, and half dominated by the current �tness.

Therefore we can create the rank position numbers by this simple counting pro-

cess. For example, E is dominated by A, B, C & D and therefore has a rank of

4. Value C is dominated by A & B but is tied with D and so gets a rank of 2:5.

Alternatively, we could consider the dominating / not dominating decision as

being the probability that each �tness value dominates the value of interest. For

example, if we consider �tness C , the probability that A dominates C is one.

The probability that G dominates C is zero. The probability that D dominates

C , from (6) with m = 0, is P = 0:5. Thus we can represent the rank position

as the sum of probabilities of domination as shown in (20), where P (F

j

> F

i

) is

the probability that �tness value j dominates �tness value i.
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In (20), we have to be sure not to compare �tness F

i

with itself. If we did, we

would get an extra probability of 0:5 added to the sum. We can therefore include

F

i

in the sum, but subtract the e�ect of comparing the �tness with itself. This

is shown in (21).

R

i
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n

X

j=1

P (F

j

> F

i

)� 0:5 (21)

As (21) is based on probability, if the �tness values are uncertain, we can use

(6) or the approximations (13) or (14) to calculate the probability of domination.

For example, if �tness values A to G have a standard deviation of � = 1, the

rank positions (using (13)) compared to the no noise case are shown in Table 2.

With � = 0, we have conventional ranking and the probabilities will range

from 2=n to zero. If � =1, all of the �tness values will be assigned the same rank,

and will have a probability of selection of 1=n. Thus the standard deviation of

the uncertainty has a similar e�ect to selective pressure in conventional selection

processes [13].



Table 2. Ranks with uncertainty of � = 0 and � = 1

Value Rank (� = 0) Rank (� = 1)

A 0 0.38

B 1 1.27

C 2.5 2.31

D 2.5 2.31

E 4 4.17

F 5 5.07

G 6 5.49

4.3 Multi-Objective Ranking

With multiple objectives, we now have three possible outcomes from comparing

the two �tness values: A dominates B , A is dominated by B , and A and B

are non-dominated. If we apply the single objective ranking equation, we �nd

that the total of the rank positions is no longer n(n � 1)=2 as we now have

to account for the non-domination. If we have no noise, for two �tness values

where A dominates B , P (A > B) = 1, P (A < B) = 0, and P (A � B) = 0

Therefore when we sum the probabilities of domination, the contribution from

this pair will be 1. If the �tness values are non-dominated, the corresponding

probabilities are P (A > B) = 0, P (A < B) = 0, and P (A � B) = 1. We have

now lost the value 1 from the probability of domination calculations, therefore

reducing the sum of ranks total. This state will be the same when we compare A

to B and also when we compare B to A, therefore if we sum all the probabilities

of non-domination, this will give us twice what was lost from the probability of

domination calculations.

If we consider the ranking case for a single dimension, if A and B are iden-

tical, we cannot choose between them and so add in 0.5 to the sum. With

non-domination, we also have the situation where we cannot choose between

objectives and should therefore add 0.5 to the sum as required. In the case of

uncertain measurements, we can multiply the value of 0:5 by the probability of

non-domination, and still subtract o� 0:5 to allow for comparing the individual

with itself, thereby maintaining the sum of the rank positions as n(n � 1)=2.

Thus we can add the non-domination term into (21). The rank calculation for

multi-objective ranking is shown in (22), where n is the number of measurements

being ranked.

R

i

=

n

X

j=1

P (F

j

> F

i

) +

1

2

n

X

j=1

P (F

j

� F

i

)� 0:5 (22)

This probabilistic ranking equation allows chromosomes to be selected based

on uncertain multi-objective �tness measurements. For the objectives shown in

Fig. 5, we can calculate the rankings in order to minimise the �tness values.

Table 3 shows ranks (R) for no noise, and 1 standard deviation noise.
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In the example, we see that A is non-dominated with B, C, D, & E and

therefore gets a rank of 2. Fitness B is non-dominated with A, C, & D but

shares an objective value with E , thus being half dominating and half non-

dominated with E , the rank of B is 1:5 from the three non-dominated points

and 0:25 from E , giving a total of 1:75. We also see that each of the columns of

Table 3 sums to 15 (= n(n� 1)=2 ) as expected. The ranking process is O(n

2

),

as are many of the other ranking methods [8, 9].

Table 3. Ranks with uncertainty of � = 0 and � = 1

Value R (� = 0) R (� = 1)

A 2 2.27

B 1.75 1.65

C 1.5 1.42

D 1.5 1.92

E 3.25 3.22

F 5.0 4.53

In the general noisy or uncertain scenario, we see that the proximity of other

�tness values, even if only close on one objective, can inuence how the rank is

assigned. Measurements such as C which are relatively well spaced out on all

objectives are ranked more highly than other �tness values that are uncertain.



With no noise, the basic ranking by just counting how many points dominate

each �tness measurement described by Fonseca and Flemming [8] is very similar,

but does not allow for the non-dominated cases. The sum of the rank values will

not be consistent if non-dominated solutions are present, causing a bias towards

non-dominated solutions over other solutions. The ranking used by Srinivnas

and Deb [9] is based on `layers' of non-dominated solutions and has no consis-

tency with regards to how many layers, or ranks, are produced, therefore making

calculating selection probabilities awkward.

It is interesting to note that if we require an objective to be maximised, set-

ting � negative will cause the probabilities to be calculated for maximisation,

setting � negative has the same e�ect as negating the �tness values (the conven-

tional way of converting from minimisation to maximisation). Therefore both

minimisation and maximisation objectives may be handled easily by just setting

the sign of the corresponding value of � appropriately.

Limits on objectives, constraints on the chromosomes, and sharing can all

be implemented easily within this ranking framework, allowing interactive de-

cision making with uncertain or noisy systems viable. The equations for limits,

constraints, and sharing are derived and discussed in [12].

5 Experiment Results

5.1 Introduction

Noise and uncertainty can be split into two broad categories relating to noise

that occurs within the process (Type A) and measurement noise (Type B):

1. Type A Noise: Noise is applied to the chromosome before the objective

function is calculated, i.e. O = F (�+N).

2. Type B Noise: Noise is applied to the objective function after calculation,

i.e. O = F (�) +N .

Both types of noise are of interest and often the observed noise will be a combi-

nation of type A and B.

Trials have been performed to assess how the noise e�ects the assigned rank

position within a population of chromosomes. For the following results, 100 two-

parameter chromosomes were generated uniformly distributed in the range [0,1].

A scaled version of the objective function MOP3, de�ned by Van Veldhuizen and

Lamont [10] and given in (23), was used to provide input data to the ranking

processes, with either type A or B noise applied as appropriate. The data were

ranked and the assigned rank postion for each chromosome recorded. The process

was repeated 1000 times with di�erent values chosen for the applied noise each

time. For each chromosome, the standard deviation of the rank position was

calculated. The mean standard deviation of the 100 chromosome rank positions

was then generated and plotted.
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In (23), �(1) and �(2) are the two parameters of the input chromosome in the

range [0,1]. The parameters x and y are scaled to lie within [-3,3] as de�ned by

Van Veldhuizen and Lamont. The three objective functions are then calculated

and scaled to give each of the objectives in the range [0,1]. Noise was then applied

either to the input chromosome � for type A noise, or to the output objectives

O for type B noise. The applied noise was Gaussian with a standard deviation

of �.

The ranking algorithms from NSGA and MOGA were generated for compar-

ison with the new multi-objective probabilistic selection evolutionary algorithm

(MOPSEA) ranking process developed in this paper. With a di�erent set of 100

initial chromosomes, a slightly di�erent set of graphs will result. The di�erences

have been found to be small however.

5.2 Results

From �gures 6 & 7 it is clear that both MOGA and MOPSEA outperform

the NSGA ranking process in the presence of noise for this objective function.

As the uncertainty parameter �

n

is increased, it is clear that MOPSEA can out

perform both alternative algorithms. The speci�c performance of each algorithm

is dependent on the objective function though. Other objective functions are

covered in [12].

6 Conclusions

The results have shown that the modi�ed ranking process can reduce the dis-

turbances in the rank positions caused by noisy objectives. Unlike conventional

ranking processes, the rank values and therefore the corresponding selection

probabilities take some account of the noise and uncertainty in the system. The

theory developed in this paper forms an important �rst step towards addressing

directly noise and uncertainty in multi-objective problems. The simplicity of the

ranking and selection equations may also provide a route to further theoretical

research into the operation and performance of evolutionary algorithms.
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