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Abstract- A novel approach for generating optimal flight
pathsfor a swarm of missilesusing an on-line, noise-aware,
multi-obj ective evolutionary algorithm isintroduced. The
trajectory shape is controlled by flying via intermediate
points which are adjusted dynamically by the evolution-
ary algorithm, then towards the point of impact with the
target.

|. Introduction

High value and high threat targets are often defended well or
difficult tointercept. Firing asalvo of missiles canimprovekill
probability, but each of the missiles will follow the same tra-
jectory. Alternatively, by adding communications between the
missiles, the missiles could act as an intelligent salvo, sharing
data to improve countermeasure rejection and to improve tar-
get parameter estimates, or better still could co-ordinate their
flight paths in order to create a swarm. The swarm concept is
defined as having the guided platforms perform a coordinated
attack, but not necessarily flying in aformation of any form.

In conventional guidance algorithms, data from the sensor
isfed directly to the guidance algorithm, generating lateral ac-
celeration demands which are fed to the platform autopilot,
which moves the control surfaces accordingly. Thus platforms
flown as a salvo will need to have different guidance algo-
rithmsif different flight profiles are required [1].

In evolutionary guidance, the platform is first flown via a
seguence of one or more pointsin space, before flying towards
a predicted impact with the target, or a required rendevouz
point. The points in space are evolved to generate a flight
profile that is an optimal solution to a set of objectives and
constraints. With multiple platforms, the flight profiles can be
evolved simultaneously, each flight profile being evolved while
accounting for the intended flight paths of the other missiles.

With the evolutionary guidance approach, for most of the
engagement there is no direct, deterministic path between the
sensors and the autopilot. Thus the initial stages of the flight
path can be independent of the target position and motion, al-
lowing different trajectories to be generated easily. In this ap-
plication, the scenario will be changing as the platforms fly,
therefore changing the characteristics of the objective func-
tions. With aplatformwith ahighly non-linear flight character-
istic, there arelikely to be many sub-optimal flight paths. Evo-
lutionary algorithms are global optimisation techniques and
are robust to noise in the objective functions and have been
shown to be well suited to the single missile path planning

problem[2].

This problem is very different to that solved by conven-
tional evolutionary algorithms. The objectives are noisy and
so repeated eval uations of the same chromosomewill give dif-
ferent answers. The objectives are dynamic and so the optima
move slowly with time. The optima may also move rapidly
(appear discontinuous) if the target manoeuvres. There are
multiple objectives to satisfy, leading to a Pareto set of solu-
tions. When combined with noise, the Pareto set is no longer
crisp and solutions now have probabilities of domination as-
sociated with them, blurring the Pareto surface and preventing
a’'perfect’ decision. As a complete missile flight is less than
20 seconds, a decision process is needed to choose a single
operating point from the Pareto set.

The noise-aware multi-objective evolutionary algorithm [ 3]
is used to maintain a noisy Pareto optimal set of flight profile
sets, based on the primary objectives of the engagement. For
this paper two primary objectives are used:

e To maximise the smallest latax capability at impact of
all the missiles.

e To maximise the smallest difference between the mis-
siles’ impact angles.
The Pareto surface is maintained to allow the guidance ago-
rithm to respond rapidly to changesin the scenario. Minor ob-
jectives and constraints are then used to aid the decision mak-
ing process where one solution from the Pareto surfaceis used
to generate the guidance information for the platforms.

The following sections first describe typical guidance
heuristics, then the evolutionary algorithm and decision mak-
ing process. Themissile model used inthe examplesisdetailed
and example results presented. Finally the paper concludes
and indicates areas of future research.

1. Guidance Heuristics

Proportional Navigation (PN) [4] has been used for many years
and is well proven as a guidance algorithm. The main essence
of the technique isto form a collision triangle, based on target
position and velocity, and use it to estimate an impact point
where the missile could first intercept the target. The missile
then fliestowards theimpact point, rather than at the target and
uses seeker anglerateto derivethelateral acceleration required
to correct the position of the estimated impact point.

The impact point and required flight direction are implicit
within the PN formulation and are not calculated explicitly.



The process of estimating an impact point can be generalised
to any predicted target manoeuvre, where the minimum time
trajectory for the missile to fly is a straight line to the impact
point. Proportional navigation has been enhanced to achieve
this, such as Augmented Proportional Navigation (APN) [4]
where target |lateral acceleration is taken into account.

For a generalised minimum time guidance heuristic, once
the impact point is estimated, the lateral acceleration required
to steer the missile towardstheimpact must be calculated. This
is achieved by calculating the angle between the current flight
direction of the missile and the direction towards the estimated
impact point. The missile must turn through this angle in the
shortest time possible, given the current maximum lateral ac-
celeration of themissile. Thusthe angular rate required may be
established and along with therelationship a = vwiq., Where
v is the forward velocity and w,,,.. 1S the maximum angular
rate to be applied for the shortest time, the lateral acceleration
and the duration of the acceleration event may be generated.

A sub-optimal approach where alower acceleration is ap-
plied for acorrespondingly longer time may also be used. This
is closer to the operation of traditional PN based techniques.
This sub-optimal techniqueis useful in missiles with high lev-
els of sensor noise and lift-drag coupling, where many large
course corrections can have an adverse effect on missile veloc-

ity.
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Figure 1 shows the engagement geometry for a constant ve-
locity target. The missile has a current velocity ‘717'1 and must
pull lateral acceleration in order to obtain a velocity V,,. The
missile must turn through angle 6, and forms the basis of the
guidance heuristic described above. The projected point of im-
pact, Py, iscalculated using (1), wheret isthe predicted impact
time, 7 is an arbitrary time during the engagement and V,,, is
the known scalar speed of the missile.

Aswe alwayswant the shortest impact time, 1/t must be as
large as possible, therefore (1) may be modified and the impact

Figure 1: Engagement geometry

time may be calculated from (2).
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If g or t are negative, the missile is flying too slow and will
never catch the target.

Equations to fly at the target in a straight line can also be
developed for manoeuvring targets, for exampleif thetarget is
performing a constant acceleration turn. To use these strate-
gies effectively, good estimates of target lateral acceleration
are required.

[11. Evolutionary Algorithm

The engagementsdescribed in this paper aretypically less than
15 seconds in duration. The guidance algorithm may be up-
dated between 10 and 50 times per second. For conventional
evolutionary algorithms, the complete run of many generations
must be completed within at best 0.1 seconds. An aternative
approach is to perform one or two generations for each guid-
ance update, and use the evolutionary algorithm to optimise
the resultant noisy and dynamic objective function.

In acommand-guided swarm, a potential solution would be
amatrix containing the intermediate aim point vectorsfor each
of the missiles. In this paper, a multi-objective evolutionary
strategy was used [5] to evolve good sets of aim points. The
initial population of solutions is usualy generated entirely at
random, within some bounds to ensure that most (but not nec-
essarily all) of the solutions are feasible to fly. If heuristics
exist to find good sets of aim points, these could be used to
help generate the initial population. In this paper, asingle mis-
sile was flown at the target without any fixed aim points. This
provides a default trgjectory. The maximum and minimum ex-
tents of the default trajectory on each axis are then extended by
20% in all directions, resulting in a bounding box for the loca-
tions of the evolved fixed points. The initial points were then
generated randomly with a uniform distribution to lie within
the bounds.



All the sets of solutionsare evaluated by simulating the mis-
siles engaging the target and establishing the overall perfor-
mance of the trial solution. A set of objectives and constraints
are used to guide the optimisation process; for exampletypical
objectives may be to minimise the longest flight time, min-
imise the difference between the longest and shortest flight (si-
multaneous time-on-target), maximise the smallest difference
between the impact angles etc. If a chosen intermediate aim
point causes a missile to miss the target in the simulation, the
guidance for the particular missile can default to fly straight
towards the closest impact point. In order to allow the results
to be displayed clearly in this paper, only two objectives will
be considered.

These results will form a Pareto Optimal Set [5] where no
single solution is better than any of the others when all ob-
jectives are taken into account. For example, trajectories with
long flight times are undesirable but can achieve a very wide
spread of impact angles, while short flight timetrajectorieswill
have a small range of impact angles but will have higher im-
pact velocities. For the results shown in section V1., a base
population of M = 50 trial solutions was used. At each gen-
eration, N = 150 new trial solutionswere created, and all 200
evaluated. The best 50 were then chosen for the next genera-
tion. The approach of only retaining a quarter of the solutions
helps the algorithm to adapt to rapid changes in the objective
functions.

Aim point selection is described in section IV. and allows
a single solution from the population to be used for targeting.
If a missile passes an aim point then it switches out the evo-
Iutionary algorithm and heads for the point of impact with the
target. In the simulation, when one missile comes within one
kilometre of the target, all the missiles change if necessary to
aim at the target and the guidance heuristic, along with any
fused target position information, is used to guide the missile.

V. Multi-Objective Selection and Decision
Making Process

With any multi-objective optimisation, theresult isnot asingle
solution, but afamily of equally attractive solutions. However,
for the guidance problem only a single solution must be cho-
sen to provide the aim-points for the missiles. The selection
of the aim pointsis made by combining the primary objectives
to form a noisy Pareto surface, and then using secondary ob-
jectives and constraints to choose a single set of aim points,
which correspondsto a single chromosome, from the resultant
noisy Pareto set.

The primary multiple objectives are handled using the
Multi-objective Probabilistic Selection Evolutionary Algo-
rithm [3]. Here the multiple objectives are selected, based on
the probability of non-domination, given that the objectives
are noisy. Two objectives were used to form the Pareto front:
to maximise the smallest difference between the impact an-
gles, and to maximise the smallest latax capability at impact.
These two objectives are often mutually exclusive as manoeu-

vres must be performed to create a wide set of impact angles.
This will slow the platform down, leading to a reduced latax
capability.

The selection algorithm was made aware of a small amount
of noise on the objectives[3]: o,, = 1.0 for the smallest angle
objective (in degrees), and o, = 0.25 for the minimum latax
(in m/s?). These values have not been tuned in any way and
were used to prevent the Pareto surface from collapsing into a
crisp line which would not be representative of the noisy sur-
face where domination can only be described probabilistically.

Next the following rules are used to help choose the single
operating point out of the noisy Pareto set:

¢ Remove any solutions whose worst terminal latax isless
than 10g. If al the solutions are worse than 10g, take
the solution with the highest terminal latax as being the
operating point.

e |f short or long engagement, prefer solutions with high
terminal latax, otherwise take widest spread of angles.

e |f pointisnot restricted by item (1), trade selection with
respect to distance to previous aim point to reduce mis-
sile steering demands.

The constraint in item (1) is simpleto apply and often leads
to the solution being chosen for the first half second after
launch when the missile terminal velocity is difficult to pre-
dict. When the missile boost phase is over (about 3 seconds),
the velocity predictionis often stable enough so most solutions
satisfy the constraint.

The estimated length of the engagement, ¢.., isused to select
theaim pointin item (2). Equation (3) isused to deriveavalue
k. that liesin theinterval [0,1]. When k. = 0 the engagement
is either short or long and so the platform tries to optimise the
terminal latax. When k. = 1, the range of impact anglesis to

be maximised.
8
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Idedlly, it would be best to fly directly at a stable aim point,
and then towards the target. This would minimise the amount
of manoeuvre the platform must perform and therefore min-
imise the drag, maximising the terminal kinetic energy and
latax capability. Therefore, the distance, d;, from the it aim
point to the aim point used in the last time interval can be cal-
culated. The best solution should be chosen to minimise d;.

If the target manoeuvres, then the last aim point may not be
optimal anymore. Minimising d; is no longer necessary and
so the aim point can be chosen solely on the main objectives.
This alows for a fast response once a manoeuvre has been
detected. A manoeuvre detection signal was generated in the
simulation using (4), where y is the manoeuvre detect signal
lyingintherange[0, 1] with u = 1 signifying no manoeuvreis
expected, and I, and Ij,_, are the current and previousimpact




point predictions.
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Deciding on a single chromosome means resolving the
primary objectives of maximise terminal latax and maximise
range of impact angles, subject to the minor objective of min-
imise motion of aim point subject to target manoeuvre. A sim-
ple multi-objective combination process can be used, given
that the primary objectives and therefore chromosomes of in-
terest are now a noisy Pareto set. The three objectives are
calculated for each individua 7 and three sets of rank orders
Ry gtax Rangle’ Ry are generated for the three objectives,
with the best objective value being rank 1. Three weighted
rank values for each individual can then be generated using (5)
and the worst taken to represent the score of theindividual, F;.
The solution with the lowest F; is then taken as the best. This
non-parametric weighted min-max optimisation is tolerant to
the Pareto surface being concave.
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The best performing solution is selected and used to sup-
ply the aim points for the platforms. This approach is a little
crude, asit can be seen in the results that the population forms
into clusters around points in space that represent good solu-
tions. By always taking the best solution, the aim point can
wander within the cluster, causing small latax demands to be
generated. A clustering algorithm could be used to identify the
centre of the best performing cluster of individuals, therefore
making the aim point more stable.

V. Missile M odel

The model is based loosely on a ship-launched boost-glide
missile. For simplicity and to increase processing speed, sim-
plesingle step integrationwith acoarse 0.1 second interval was
used for the main missile models, and a0.3 second interval for
theflight path projection simulations. This approach meant the
integration was too coarse to alow the missile control system
to be modelled, so the performance characteristics were gener-
ated by modelling the limits imposed by the body aerodynam-
ics. Themissileisrestricted to atwo dimensional engagement
in the vertical plane and is subject to the initial boost force,
changing mass, gravity, forward drag, lift-drag coupling, and
changes of air density and speed of sound with altitude.
Equation 6 details the calculation for the lateral accelera-
tion demand of the missile. The equation calculates the ac-
celeration needed to steer towards the impact point, and also
calculates the accel eration needed to correct for the effects of
gravity. The angle to steer, 6, is as defined in figure 1; 6t is

the time step of the model; |V},,| is the missile speed; V, isthe
unit vector in the direction that the lateral accel eration must be

applied; and & is a constant that acts to damp the response of
the missile. In the trials shown in this paper, avalueof £k = 5
was used to help prevent many rapid course corrections caus-
ing excessive drag on the missile.
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Figure 2: Curve of maximum latax with respect to forward
Speed

The lateral acceleration demand, I, may not be achievable
though and so must be limited by calculating the maximum
possible demand for the given conditions as shown in (7).

leOa
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Figure 2 shows the non-linear relationship used to deter-
mine the maximum latax demand, /,,,,.., for a given speed. If
the required latax exceeds the maximum value, the demand is
cropped. The graph shows the performance for the missile in
the glide phase where the mass is at the minimum value and
themissile at sealevel.

Equations 8, 9 & 10 give the approximations for the speed-
of-sound, V;, air density, p, and mass m. Speed of sound and
air density vary with respect to atitude, h.

(")

Vs = 340.3—-0.0041h (8)
—h
m = 34(tanh(1.5—-1t)+1)+ 75 (10)

The forward acceleration, a, is calculated using (11), boost
force using (12), change in forward velocity using (13), and



change in position with (14).
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A missile cross-sectional area of A = 0.0254, mean drag
coefficient of Cy = 0.45 and mean lift-drag ratio of Cyy = 3.5
were used inthe simulations. The actual valuesfor C; and Ciy
were different for each missile by up to +10%.

V1. Results

Time 0.1 Seconds, Generation 1
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Figure 3: Initial predicted trgjectories showing location of
fixed points in evolutionary algorithm population at genera-
tion1l

A sample swarm with four missiles, launched from coordi-
nate [0, 0], was simulated engaging a target flying with con-
stant velocity at Mach 1. The missile sensor system was simu-
lated by corrupting the exact target position and velocity with
noise, causing the estimated impact point to wander. An evo-
Iutionary algorithm with a working population of 50 trial aim-
points was used, with one generation being simulated as 0.1
seconds.

Figures 3 & 4 show theinitial population and initial Pareto
set at instant of launch. The missile velocity is still zero at this
instant, so a number of generations can be executed before a
significant speed and change in position has been attained, al-
lowing the algorithm to begin to converge. By 2 seconds (20
generations) clusters of aim-points are forming and the Pareto
set is stabilising, yet the missile has only travelled 500 metres.

The missile positions are marked with crosses, the proposed
fixed points are dots, the target position is a circle, the pre-
dicted trajectories are dashed lines, and the predicted impact
points are stars. On the Pareto set, the chosen operating point
isringed.
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Figure4: Initial Pareto set at generation 1
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Figure 5: Partial and predicted trajectories showing location
of fixed pointsin evolutionary algorithm population at genera-
tion 60

Figures5 & 6 show the state at 6 seconds (60 generations).
Here the aim points are forming tight clusters and the trajecto-
ries are forming well. The chosen operating point appears to



be good on angle, but poor on impact velocity. The particular
point has been chosen as the range is not short or long and it
iscloseto the last operating point. It must be remembered that
asthe objectives are noisy, the Pareto surfaceisno longer crisp
with all points being 100% non-dominated. The noisy Pareto
optimisation ensures that the point has a good probability of
being non-dominated.
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Figure 6: Pareto Front at generation 60

The first impact occurs at 13.0 seconds, and is shown in
figure 7. 1t can be seen that the missiles each took a different
path to the target, with quite agood spread of impact angles. In
the early phase of the engagement, all the pathsare the same as
the missile manoeuvreisrestricted by the maximum lateral ac-
celeration limit of the platforms. As the processis stochastic,
each run of the algorithm will produce different flight paths.

VII. Conclusions

The multi-objective evolutionary guidance approach provides
a comprehensive framework alowing multiple missiles to co-
ordinate attacks on single or multiple targets. The framework
also alows for data from multiple sensors to be fused easily,
as the guidance requires estimates of missile and target po-
sitions etc. in absolute coordinates to be used. The results
were generated using a highly non-linear missile, combined
with noisy measurements and uncertain system models. This
shows clearly that the method is tolerant of complexity and
many sources of error. The method also demonstrates how a
simple decision making process can be used to select asingle
point from a Pareto set in a dynamic system.

The technique does however require significant processing
resources. On todays fast machines, evolutionary guidance as
demonstrated will be just realisable in real time, albeit with
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Figure 7: Final trajectories, first missileimpact at 13.0 seconds

relatively small population sizes. The larger the population
size used, and the more accurate the missile simulations, the
better the guidance will perform.
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