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Abstract- This paper details a new non-Pareto evolu-

tionary multi-objective algorithm, Multiple Single Ob-

jective Pareto Sampling (MSOPS), that performs a par-

allel search of multiple conventional target vector based

optimisations, e.g. weighted min-max.

The method can be used to generate the Pareto set

and analyse problems with large numbers of objectives.

The method allows bounds and discontinuities of the

Pareto set to be identified and the shape of the surface to

be analysed, despite not being able to visualise the sur-

face easily.

A new combination metric is also introduced that al-

lows the shape of the objective surface that gives rise to

discontinuities in the Pareto surface to be analysed eas-

ily.

1 Introduction

Many methods have been developed that exploit the popu-

lation of an evolutionary algorithm in order to generate an

entire Pareto set of a multi-objective problem during a sin-

gle run.

The methods can be split broadly into non-Pareto

and Pareto based methods. The non-Pareto based meth-

ods (VEGA, etc. (Deb, 2001)) generate a Pareto set im-

plicitly, without making a direct comparison to check

domination/non-domination with other members of the pop-

ulation. Pareto based methods (MOGA, NSGA, SPEA,

etc. (Deb, 2001) and bounding methods (Schutze et al.,

2003)) rely on ranking the population based on a direct mea-

sure of Pareto dominance within the population.

Traditional optimisation approaches often use aggrega-

tion or target vector approaches (Deb, 2001), but only al-

low a single solution to be found. Successful methods (Jin

et al., 2001) have exploited the aggregation and target vec-

tor approaches, changing the weight or target vector of the

search during evolution in order to develop a full Pareto set

during the run.

Unfortunately, most of the methods (especially Pareto

based approaches) have difficulty in generating Pareto sets,

or even analysing small regions of the Pareto set, of prob-

lems that have large numbers of objectives. In Pareto

based methods, the bulk of the population becomes non-

dominated very rapidly with large numbers of objectives

and the selective pressure is reduced, leading to stagnation

of the algorithm.

Many practical Pareto sets are also discontinuous and

may have large ‘gaps’. The general shape of ‘interesting re-

gions’ on the Pareto front are also difficult to visualise and

analyse with high numbers of objectives.

This paper presents a new non-Pareto based method that

is capable of generating efficiently Pareto sets for problems

with many objectives. The method allows all traditional ag-

gregation and target vector approaches to be incorporated

into an evolutionary algorithm which generates a Pareto

front in a single run.

2 Method

2.1 Population Ranking

The concept is to generate a set of T target vectors (or goals,

aggregation weights etc., depending on the methods to be

applied), and evaluate the performance of every individual

in the population, of size P , for every target vector, based on

the chosen aggregation/target vector method(s). As target

vector (eg. weighted min-max, ǫ-constraint, goal attainment

etc.) and aggregation (eg. simple weighted sum, Lp norm

etc.) methods are very simple to process, the calculation of

each of the performance metrics is fast.

Thus each of the P members of the population has a set

of T scores that indicate how well the population member

satisfied the range of target conditions. The scores are held

in a score matrix, S, which has dimensions P × T . Each

column of the matrix S (each column containing P entries)

is now ranked, with the best performing population member

on the corresponding target vector being given a rank of 1,

and the worst a rank of P . The rank values are stored in

a matrix R. Each row of the rank matrix R may now be

sorted, with the ranks for each population member placed

in ascending order. The R matrix now holds in the first col-

umn the highest rank achieved for each population member

across the set of target vectors. The second column will

hold the second highest rank achieved etc. Thus the matrix

R may be used to rank the population, with the most fit be-

ing the solution that achieved the most scores which were

ranked 1 etc.

The flexibility of the approach is such that the target vec-

tors can be arbitrary, either generated using some structure,

or generated at random within certain limits. As the rank-

ing method employed is based on the number of target vec-

tors that are satisfied the best, a solution at the edge of the

objective space will often satisfy vectors that cannot be at-

tained. The focus of the optimisation is naturally drawn to

interesting regions of surface such as the boundary of the

optimisation surface and discontinuities.



2.2 Target Vector Methods

The approach has been applied to a range of aggregation and

target vector methods including weighted sum, ǫ-constraint,

goal attainment and Lp norm. Some of the methods (eg.

ǫ-constraint & goal attainment) rely on turning some or all

of the objectives into constraints. The target vector then be-

comes a vector describing the locations of the constratints,

but an EA that is capable of handling constraints effectively

is required to maximise the performance of the approaches.

The following two approaches have found to be satisfactory

for many multi-objective problems.

2.2.1 Weighted Min-Max

The weighted min-max score of k objectives is calculated

using (1),where wi is the weight of the i
th

objective, Oi.

s =
k

max
i=1

(wiOi) (1)

Weighted min-max is able to generate points on both con-

vex and concave Pareto sets. If the optimisation process

converges to a solution that exactly ‘matches’ the weight

vector, then w1O1 = w2O2 = . . ., allowing the conver-

gence of the solution with respect to the weights to be as-

sessed. The weight vector corresponds to a point on the

Pareto set in the true direction given by the vector V =
[1/w1, 1/w2, . . .]. Thus the angle between the vectors V
and O indicate whether the solution lies where it was ex-

pected or not. If the vector V lies within a discontinu-

ity of the Pareto set, or is outside of the entire objective

space, then the angle between the two vectors will be sig-

nificant. By observing the distribution of the final angular

errors across the total weight set, the limits of the objective

space and discontinuities within the Pareto set can be iden-

tified.

2.2.2 Vector Angle Distance Scaling (VADS)

This paper introduces a new metric, Vector Angle Distance

Scaling (VADS). The VADS score is the magnitude of the

vector of objectives (|O|), divided by the cosine of the angle

between the vector of objectives and a target vector, which

has been raised to a high power. The cosine of the angle can

be calculated conveniently by a dot product operation. The

score equation for k objectives is calculated using (2), where

V̂ is the k-dimensional unit-length target vector which de-

scribes the point on the Pareto front to search for, O is the

k-dimensional objective vector and q is a constant factor

(typically 100).

s =
|O|

(

V̂ · O
|O|

)q (2)

VADS is able to generate points on both convex and concave

Pareto sets, and has an interesting property that it does not

just identify the Pareto front, but rather the objective front,

i.e. the leading edge of the objective space. Thus highly

concave regions that may appear as discontinuities in the

Pareto front can be identified. Low values for q may lead to

difficulty in identifying very sharp concavities in the objec-

tive front.

The final solution should have the objective vector O
lying parallel to the target vector V . Thus the angle be-

tween the two vectors can be used to assess final conver-

gence. As VADS is tolerant of ‘folds’ in the objective sur-

face that cause discontinuities in the Pareto front, angular

errors between V and O indicate unobtainable regions or

dislocations in the objective surface.

2.2.3 Dual Optimisation

If the same set of target vectors is used to generate two R
matrices, one based on scores calculated with the weighted

min-max, and the other with VADS, the rows of the two ma-

trices can be concatenated (giving a matrix of size P × 2T )

and sorted, allowing each population member to be assessed

by each weight, and for both scoring methods. Thus the fo-

cus will be more biased towards the Pareto set as often a

solution will score highly for both methods, but the leading

edge of the objective surface will also be retained.

2.3 Evolutionary Algorithm

This paper describes a new method for ranking a population,

essentially based on a set of single-objective tests; thus the

method may be applied to a wide range of EA approaches.

The method has been tested with traditional genetic algo-

rithms, evolutionary programmes and evolutionary strate-

gies and works well. For the results presented in the paper,

a method based on Differential Evolution has been used.

Differential Evolution (Storn and Price, 1995) is an evo-

lutionary technique that uses reproduction that is related to

the current spatial distribution of the population. The algo-

rithm generates new chromosomes by adding the weighted

difference between two chromosomes to a third chromo-

some. At each generation, for each member of the parent

population, a new chromosome is generated. Elements of

this new chromosome are then crossed with the parent chro-

mosome to generate the child chromosome. The child chro-

mosome is evaluated using the objective function. The size

and direction of the difference between any pair of chro-

mosomes is determined by the overall spread of the current

population. Thus the DE algorithm self adapts to the fitness

landscape, reducing the size of the mutations automatically

as the search converges. In this way, no separate probabil-

ity distribution has to be used for mutation which makes the

scheme completely self-organising.

The trial chromosome ~Pt may be described as in (3).

~Pt = F ( ~Pa − ~Pb) + ~Pc (3)

Where chromosomes ~Pa, ~Pb & ~Pc are chosen from the pop-

ulation without replacement and F is a scaling factor.

The crossover process is controlled by a crossover pa-

rameter C. The crossover region begins at a randomly cho-

sen parameter in the chromosome and then a segment of

length L genes is copied from ~Pt to the parent chromosome

to create the child chromosome. If the segment is longer

than the remaining length of the chromosome, the segment



is wrapped to the beginning of the chromosome. The length

L is chosen probabilistically and is given by (4).

P (L ≥ v) = (C)v−1, v > 0 (4)

In general, the scaling parameter F and the crossover

parameterC lie in the range [0.5, 1]. Small values of F mean

that the population spread reduces faster and this is more

likely to result in the algorithm converging quickly at a local

minima. In this paper values of 0.7 for both F and C have

been used.

Constraints have been applied using a simple priority

method. The priority is applied in the initial stage where

the score matrix S is ranked to generate the matrix R. The

constrained and unconstrained solutions are separated and

ranked separately, with the best performing solutions in

each set being given the rank of 1. The rank value of the

worst unconstrained result is then added to the rank values

of the population members that are constrained. Thus solu-

tions that violate constraints will always appear worse than

the unconstrained solutions.

The population size should ideally be larger than the

number of target vectors used. Typically the population

should be one and a half or twice the size as the target vector

set, but as with many EA approaches, the larger the popu-

lation is, the better the initial search is and the less likely

the algorithm is to be deceived by local optima. The pro-

cessing speed of the algorithm is a trade between the pop-

ulation size and also the number of target vectors. In gen-

eral the processing time of the algorithm is approximately

O(MTP log(P )) if P > T , or O(MPT log(T )) if P < T
where M is the number of objectives, T is the number of

target vectors and P is the population size. The behaviour

is mainly influenced by the ranking of the population mem-

bers for each target vector using an O(P log(P )) sort algo-

rithm.

If the population is smaller than the number of target vec-

tors, the population will naturally distribute itself among the

vector set. If the best value obtained for each target vector is

recorded, even with very small population sizes, a very rea-

sonable approximation of the Pareto set and objective front

can be obtained.

As a consequence of generating the rank matrix R, it is

simple to implement niche formation by applying restricted

breeding, based on proximity in objective space. In the Dif-

ferential Evolution selection phase, three vectors must be

chosen from the population to determine the new trial chro-

mosome. Each row of the matrix R holds a set of target

vector rankings for the population member corresponding

to the row. The target vector that the corresponding objec-

tive values are closest to can therefore be identified. The

rankings in this column can then be used to identify other

population members that also perform well on this target

vector. By definition, they must be close in objective space

to the current population member of interest and can there-

fore be used to form a restricted breeding pool. For all the

examples in this paper, the closest half of the population

was used to form basic restricted breeding.

3 Example Application

To demonstrate the behaviour of the ranking method and ap-

proach to analysis of the Pareto surface, two multi-objective

test functions will be studied (Van Veldhuizen and Lam-

ont, 1998).

F1 :

f1 = x

f2 = y

0 ≥ −(x)2 −(y)2 + 1 + 0.1 cos

(

16 arctan

(

x

y

))

0.5 ≥ (x− 0.5)2 + (y − 0.5)2

0 ≤ x, y ≤ 1 (5)

F2 :

p = 6x− 3

q = 6y − 3

f1 = 0.5(p2 + q2) + sin(p2 + q2)

f2 =
(3p− 2q + 4)2

8
+

(p− q + 1)2

27
+ 15

f3 =
1

p2 + q2 + 1
− 1.1 exp (−p2 − q2) + 0.1

0 ≤ x, y ≤ 1 (6)

The functions are (Van Veldhuizen and Lamont, 1998)

Tanaka and Viennet(3) respectively and have been scaled so

in the decision space 0 ≤ x, y ≤ 1, and also offset to make

all the objective values greater than zero.

3.1 Two Objective Example

Figures 1 shows the result of the combined weighted min-

max and VADS search applied to (5) with 21 target vectors

(shown as dashed) and a population of 30 for 50 genera-

tions. The dots represent the distribution of the final popu-

lation, the stars indicate the best set of solutions found with

the weighted min-max and the circles are the best VADS

solutions.

It is clear that points on the boundary of the objective sur-

face have been identified. The ‘leading edge’ of the objec-

tive space is identified by VADS, while the min-max finds

the Pareto set. This feature is very useful for analysing the

behaviour of the objectives, rather than just the Pareto set.

The area around [0.1 0.3] is a discontinuity in the Pareto set

and as such has only been identified in the VADS search.

The corresponding vectors of angular errors for VADS and

min-max respectively are shown in figures 2 & 3, sorted

according to the weights with v1 (the first element of the

target vectors) increasing. It is clear that many of the search

vectors were satisfied with an error less than 2◦ away from

their target vector for VADS; but there are areas with high

errors for weighted min-max, indicating that some vectors

could not be satisfied. These errors correspond to the limits

of the Pareto set in the VADS plot (first two and last target
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Figure 1: Plot of objective/decision space for function (5)

vectors) and also to the discontinuities in the function in the

weighted min-max plot (around vectors 6 and 16).

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Weight vector index

V
A

D
S

 a
ng

ul
ar

 e
rr

or

Figure 2: Plot of angular errors to weight vectors for VADS

and function (5)

This example demonstrates that because we know a-

priori the regions of the Pareto set that are being investi-

gated, based on the set of target vectors, we can quantify

how close the optimisation result came. It is also clear that

as it is the number and quality of target vectors that are sat-

isfied that determines the score of a population member, the

number of objectives has little effect on the performance of

the algorithm, unlike in Pareto based methods. With large

numbers of objectives though, large numbers of target vec-

tors may be required if a detailed search is to be performed

across the entire objective space in one pass. It is simple

though with the MSOPS method to target a range of smaller

areas with each run. The areas can be of varying size and

diverse in each run if necessary, providing extreme flexi-

bility in the optimisation process. Strategies may be used

to yield extra information about the Pareto surface such as
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Figure 3: Plot of angular errors to weight vectors for

weighted min-max and function (5)

generating a set of target vectors that lie on a plane, allow-

ing ‘slices’ through the Pareto set to be visualised to test for

continuity. If the sum of the objectives found along the slice

is plotted, it is simple to analyse the degree of convexity in

interesting regions of functions with large numbers of ob-

jectives that cannot be visualised directly. Figure 4 shows a

plot of the sum of the closest objectives to each target vector

for F1. The rise in the middle of the plot indicates that the

function is in general concave.

3.2 Three Objective Example
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Figure 4: Plot of sum of objectives for function (5)

In the two objective case, it is simple to visualise the

objective surface. With three objectives, visualisation is

more difficult and it becomes almost impossible with four

or more.

Figure 5 shows the decision space result of applying both

VADS and weighted min-max simultaneously to F2 with
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Figure 5: Decision space for 3 objective function (6)

101 randomly generated target vectors, a population of 150

and 50 generations.
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Figure 6: Plot of angular errors to weight vectors for VADS

and function (6), sorted by v1

Figures 6 & 7 show the angular error for VADS and

weighted min-max, sorted based on v1. It is clear that

most areas could not be satisfied accurately by either metric

and therefore correspond to regions outside of the objective

space, while those that are covered by VADS only are likely

to be discontinuities, or very flat areas in the Pareto surface.

There may also be occasions where the weighted min-max

only finds a solution. These areas correspond to regions of

very high concavity in the Pareto set.

Figures 8 & 9 show the same VADS data as in figure 6,

but sorted with respect to v2 and v3 respectively. There is

clearly a strong correlation between the angular errors and

v2 and v3. As we are only interested in the region where the

objective surface exists, we can reduce the range of each of

the elements of the target vector, based on the VADS data.

We can see from figure 8 that there is no need to examine the

area covered by the vectors below vector 65. Vector 65 in
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Figure 7: Plot of angular errors to weight vectors for

weighted min-max and function (6), sorted by v1

the plot has a v2 component of 0.66, and therefore we only

need to generate target vectors with a range of [0.66,1] for

the elements of v2. The other elements of the target vector

may be constrained accordingly, refining the search to the

feasible areas of the objective space.
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Figure 8: Plot of angular errors to weight vectors for VADS

and function (6), sorted by v2

After two refinement steps, the VADS error, sorted by

v3 is shown in figure 10, and the resulting decision space

in figure 11. The unity length target vectors are constrained

to the regions [0,0.49], [0.87 1] and [0 0.058] for v1 to v3
respectively. It is clear that v3 operates in only a very small

region and has a dominating effect on the valid region of the

objective surface. Although Euclidean distance is used in

the generation of the set of results, the ability to detect the

edges of the objective surface and refine the search, even

with many objectives, allows the relative scaling and offset

of the different objectives to be analysed. In this example,

the minimum of the three objectives over the final set of

weight vectors is [0.003 15.0 0.0002], indicating an offset
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Figure 9: Plot of angular errors to weight vectors for VADS

and function (6), sorted by v3

on the second objective, and the range of the objectives is

[8.1 1.9 0.3], indicating a large range of relative scaling.

Figure 12 shows the sum of the three objectives, sorted by

v1. The figure shows a clear relationship between v1 and

the shape of the surface. With such extreme scaling of the

objectives, it is difficult to infer the general shape of the ob-

jective surface, but the depression in vectors 1 – 30 indicates

that the region is generally convex, and the steady increase

with v1 increasing indicates the objectives are strongly cor-

related to the behaviour of objective 1.
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Figure 10: Plot of angular errors to weight vectors for

VADS and function (6), sorted by v3

The final decision space shows that the Pareto set of the

function is discontinuous in decision space, and forms a

sharp line of points. There is also a region that is detected

by weighted min-max only, indicating a very sharp concav-

ity. The weighted min-max points scattered amongst the

VADS points on the long straight section of the result also

indicates that the Pareto set may lie almost along an axis of

the objective space. The final VADS plot of figure 10 also

indicates that the spread of errors is quite high, except for

a small region, suggesting that the vectors were not quite

matched exactly and that the Pareto surface is very narrow,

probably forming a line.
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Figure 11: Final Decision space for 3 objective function (6)

Figure 13 shows a plot of the points forming the final

population of the algorithm. It is clear that the objective

surface has a large convex region for low values of objec-

tive 1 and does indeed form a line.
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Figure 12: Plot of sum of objectives for function (6), sorted

by v1

4 Conclusions

The results of optimising the function with three objectives

demonstrates that much information can be obtained about

the objective surface, without having to visualise the results

of the optimisation in multiple dimensions simultaneously.

The Multiple Single Objective Pareto Sampling method,

combined with the VADS and weighted min-max metrics,
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Figure 13: Plot of objectives from final generation for func-

tion (6)

has demonstrated that complex objective spaces can be anal-

ysed easily and efficiently using multiple target vector ap-

proaches. It is clear that it is very simple to focus the search

into areas of the objective space that appear to be interest-

ing.

When compared to Pareto methods where the population

becomes entirely non-dominated very rapidly as the num-

ber of objectives increases, the structure of MSOPS means

that the number of target vectors determines the ability to

find the Pareto surface. Trials have been performed with

over 1000 target vectors, and yet the EA is still able to con-

verge well. As the number of objectives increases, more

target vectors will be required to give full coverage of the

potential objective space with reasonable spacing between

vectors. For very large numbers of objectives, the algorithm

allows the search to be focused on small areas of the poten-

tial objective space at a time.
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