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Abstract- This paper details a study into whether the
‘Piece Difference’ heuristic could be evolved for the
game of checkers. A co-evolutionary algorithm is used to
evolve a piece-weighting system that is used as the evalu-
ation function in a minimax checkers player. The results
suggest that the ‘Piece Difference’ heuristic will evolve if
allowed, but it is not necessarily easy. The work has also
demonstrated that other common heuristics can also be
evolved.

1 Introduction

The ‘Piece Difference’ heuristic is often found as one of
the key heuristics of many game playing strategies used in
the board evaluation function of many games. The piece
difference heuristic will, in essence, try to take all of the
opponent’s pieces, before the opponent can take yours. In
checkers, the piece difference strategy is often seen as an
aggressive player, making moves that maximise the num-
ber of pieces taken in the smallest number of ply. The
piece difference has been applied as a base heuristic in some
works (Chellapilla and Fogel, 2000), with the implicit as-
sumption that it could be evolved easily.

This paper focuses on attempting to evolve a piece dif-
ference strategy for both the men and kings independently
in the game of checkers. The results demonstrate that
the reverse-symmetry (white on square 32 has negative of
weight on square 1 etc.) required in the white pieces with
respect to the black pieces develops, although some regions
of the board develop much faster than others. Even when
reverse-symmetry is enforced, the weight of many of the
king locations evolve only very slowly.

2 Method

2.1 Representation

The board is arranged with the top left hand black piece
being square 1. The square is the first playable square and
does not lie in the corner of the board, as shown in figure 1.

A quartet of weights is used for each board position, each
quartet corresponding to black man, white man, black king
and white king. Thus a total of 128 weights must be con-
sidered to represent the board evaluation. The evaluation
function is designed to return +1 if black is winning and -1
if white has the upper hand. If a man crosses the board to
the far row (eg. black to squares 29 to 32), it is promoted
to a king immediately. Therefore, for black and white men,
only 7 rows of four weights are required, leading to a to-
tal of 120 weights that must be evolved in practice. Thus a
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Figure 1: Layout and indexing of board

chromosome with 120 real values was used to represent the
set of weights.

The evaluation function starts by generating a random
value in the range [-0.05,0.05], then adds the weight values
corresponding to the piece types and locations that are cur-
rently being played. The total sum is then passed through a
hyperbolic tangent function,tanh(), to restrict the output of
the evaluation to 1 if black is considered to be winning, and
-1 if white is performing better. The use of a small amount
of randomness allows each game played against the same
player to be slightly different. Without a small amount of
randomness, the evolution very quickly stagnates into play-
ers that draw against each other, all playing near identical
games. The range of randomness chosen gave consistent
evolution, without destroying the behaviour of the evalua-
tion function. Allowing the amount of randomness to evolve
always resulted in the randomness being reduced to zero and
stagnation of the evolutionary process.

2.2 Player Algorithm

The evaluation function was used in a minimax strategy
with �–� pruning, and played to a fixed depth of 6 ply,
with no extensions for forced moves. Each player played
5 games against other players selected from the population
at random, and without replacement. As used by Chellapilla



and Fogel (2000), for each game won, a player scored +1. A
draw scored zero and a loss -2. A draw was called after 100
moves each had been played. The aggregate score over the
5 games were used as the objective value to be maximised.

2.3 Parallel Evolutionary Strategy

A parallel evolutionary strategy was used with a population
of 100 chromosomes. The algorithm was a simple ‘farming’
model with the next member of the population (and there-
fore 5 games) being allocated to the next free process from
a pool of 6 DEC ALPHA 667MHz EV67 processors. In ev-
ery game, the choice of whether to play black or white was
made at random to prevent any bias.

Each of the 120 weights in the chromosome was ini-
tialised to be a uniformly distributed random number in the
range [-5,5].

The simple evolutionary strategy (Deb, 2001), in con-
junction with intermediate crossover, used a probability that
two chromosomes would cross of 0.7 and initial values for
the standard deviation of the mutations of 2 for each gene.

3 Results

The algorithm has been run a number of times, but each time
the results are very similar. Many runs would be required to
generate statistics of the behaviour of the evolutionary pro-
cess, but time has not permitted. At an average of 3 games
per second per processor, the evolutionary strategy is capa-
ble of performing about 3000 generations per day.

3.1 Evolution to distinguish black from white

Figure 2 shows a plot of the weight values for the men and
the kings after 100 generations. The solid line is the weight
values for the black pieces, given the board positions as
shown in figure 1. The last 4 board positions for the black
men have no associated weight as the piece is promoted to a
king. The dashed line shows the weight values for the white
pieces.
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Figure 2: Weight distribution after 100 generations

It is clear from the figure that the black men have a pos-
itive value, and the white men have a negative value. It is
also apparent that square 31 is almost the negated value of
square 2: squares 1 and 32 corresponding to the first mem-
ber of the first row of black and white respectively.
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Figure 3: Symmetrical Weight distribution after 100 gener-
ations

Figure 3 shows the same data as figure 2, but the dashed
line shows the negated and index-reversed weights for the
white pieces, i.e. the weight shown at index 1 is the negated
weight value for board position 32 etc. Thus index 1 to 4
represent the ‘back rank’ of both black and white etc. and
the graph is referenced to the black player only.

It is very clear that the magnitude of both black and white
at each square are evolving to create an ‘anti-symmetry’ in
the board weights, with an eventual mean of zero for ro-
tationally symmetrical piece distributions – therefore piece
difference. It is clear that the central area of the board has
evolved early in the optimisation, the conjecture being that
a strong opening play is one key to a successful win. It is
also noticeable that weights 1 to 3 are considerably higher
than the other weights, indicating that the back-rank is im-
portant. The weights for the kings are inconclusive, with
some still even being portrayed as negative and favouring
the opponent.

Figure 4 shows a plot of the weight values for the men
and the kings after 7388 generations. Figure 5 shows the
difference between the lines of figure 4 (black + index re-
versed white in practice). It is clear that the weights for
the back ranks and the centre of the board for the men are
very similar and can therefore be assumed to be approach-
ing their final values. Indeed in each run of the algorithm,
very similar final values have been noted. Conversely the
weights near the opponents back rank have a small bias to-
wards white. It is also very clear that there is still a wide
deviation in the weights of kings, even after over 7000 gen-
erations. As the kings are seldom in play, and also in small
numbers, the selective pressure to drive the weight values is
very small, and so the weights evolve very slowly.

Often kings are weighted asK times the value of a man.
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Figure 4: Symmetrical Weight distribution after 7388 gen-
erations
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Figure 5: Difference in symmetrical Weight distribution af-
ter 7388 generations

Values ofK in the range of1:2 to 3 are common. Figure 6
shows the effective ratio of the king value with respect to the
value of the man at the equivalent square index. The values
range from near zero to almost 1.8, although as the weight
values of the kings have not fully evolved, there is likely to
be significant error. It is noticeable however that there is a
general trend to prefer kings far away from the players back-
rank. This feature has also been seen in all repeated runs.
One conjecture is that in the short time that a king is in play,
it will generally be near the area where it was created, thus
biasing the evolution to concentrate on those areas.
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Figure 6: Ratio of King value with respect to Men

3.2 Evolution to generate weight values

Once it was determined that the evolutionary process would
evolve the white weights to be rotationally assymetric to the
weights for the black pieces, the rotational assymetry was
enforced and the optimisation process repeated. With the
anti-symmetry enforced, only 60 weights must be evolved,
28 for the men and 32 for the kings. The weights were ini-
tialised to lie within the region [-3,3]

Figure 7 shows a plot of the weight values for the men
and the kings after 16594 generations. All the weight val-
ues are positive, indicating that every piece is of use to the
player, no matter where it is located. It is also clear that
the back-rank of the men is generally favoured more highly
than the other regions, with the centre of the board being
weighted the least. In the early generations, the centre of
the board was often weighted relatively more highly, but as
more sophisticated play evolved, the board centre became
less ‘interesting’. Figure 8 shows the ratio of the king val-
ues to men. The mean of the distribution of the king value
with respect to the mean value of a man is 1.23, although
the kings are considered relatively more important near the
opponents back rank.
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Figure 7: Symmetrical Weight distribution after 16594 gen-
erations
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Figure 8: Ratio of King value with respect to Men

4 Conclusions

It has been shown that co-evolution can indeed discover
piece difference as key heuristic in checkers. It is also clear
that while key regions of the board, such as the players back-
rank and the centre, evolve quite quickly, other areas, espe-
cially the king values, evolve very slowly. The weight val-
ues for the pieces across the players back-rank are favoured
over the centre of the board, indicating a preference to main-
tain the players own back-rank, while endeavouring to dis-
rupt the back-rank of the opponent. This is a common strat-
egy in hand-coded evaluation functions as an intact back-
rank prevents the opponent creating kings.

Thus two key heuristics have been discovered by the evo-
lutionary process, without any additional insight, demon-
strating the power of co-evolutionary methods for knowl-
edge discovery in highly non-linear and stochastic pro-
cesses.
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