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Abstract: Modern missiles are required to operate over an expanded flight envelope to

meet the challenge of highly manoeuvrable targets. In such a scenario, an autopilot

derived from linearisation about a single flight condition will be unable to achieve suitable

performance for the whole envelope.

Gain Scheduling allows LTI control theory to be applied to time-varying and systems by

obtaining linearised models at many set-points and designing a control law to satisfy local

performance objectives for each point. The controller gains are then adjusted in real time

as the operating conditions vary.

In this paper a fuzzy pole-placement control design technique is applied to the autopilot

design for the missile, with the fuzzy control surfaces being designed using a multi-

objective evolutionary algorithm. The missile is modelled to be quasi-linear with unknown

parameters. The performance objectives related with the transient, i.e. settling time and

rising time are achieved with the fuzzy pole-placement. Copyright ©2003 IFAC
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1. QUASI-LINEAR PARAMETER VARYING

MISSILE MODEL

Missile autopilots are usually designed using linear

models of nonlinear equations of motion and aerody-

namic forces and moments (Horton, 1995). The ob-

jective of this paper is robust design of a lateral ac-

celeration autopilot for a quasi-linear parameter vary-

ing missile model. This model describes a reasonably

realistic airframe of a tail-controlled tactical missile

in the cruciform fin configuration (Figure 1). The

aerodynamic parameters in this model are derived

from wind-tunnel measurements (Horton, 1992). Pre-

vious work has looked at designing an autopilot using

feedback linearisation with optimised fuzzy trajectory

control (A.L.Blumel et al., 2001; Blumel A.L. and

B.A., 1998; Hughes E.J. and B.A., 2000).

The starting point for mathematical description of the

missile is the following nonlinear model (Tsourdos et

al., 1998), (Horton, 1992) of the horizontal motion (on

the xy plane in Figure 1):

v̇ = yv(M,λ,σ)v−Ur+ yζ(M,λ,σ)ζ

=
1

2
m−1ρVoS(Cyvv+VoCyζ

ζ)−Ur

ṙ = nv(M,λ,σ)v+ nr(M,λ,σ)r+ nζ(M,λ,σ)ζ

=
1

2
I−1
z ρVoSd

(1

2
dCnr r+Cnv v+VoCnζ

ζ
)

. (1)

where the variables are defined in Figure 1. Here v



p

r

u

v

w
q

x

yz

Fig. 1. Airframe axes.

is the sideslip velocity, r is the body rate, ζ the rud-

der fin deflections, yv,yζ semi-non-dimensional force

derivatives due to lateral and fin angle, nv,nζ,nr semi-

non-dimensional moment derivatives due to sideslip

velocity, fin angle and body rate. Finally, U is the

longitudinal velocity. Furthermore, m = 125 kg is the

missile mass, ρ = ρ0 − 0.094h air density (ρ0 = 1.23

kgm−3 is the sea level air density and h the missile alti-

tude in km), Vo the total velocity in ms−1, S= πd2/4=
0.0314 m2 the reference area (d = 0.2 m is the ref-

erence diameter) and Iz = 67.5 kgm2 is the lateral

inertia. For the coefficients Cyv ,Cyζ
,Cnr ,Cnv ,Cnζ

only

discrete data points are available, obtained from wind

tunnel experiments. Hence, an interpolation formula,

involving the Mach number M ∈ [0.6,6.0], roll angle

λ ∈ [4.5◦,45◦] and total incidence σ ∈ [3◦,30◦], has

been calculated with the results summarised in Table

1.

Table 1. Coefficients in nonlinear model (1)

Interpolated formula

Cyv 0.5[(−25+M −60|σ|)(1+ cos 4λ)+

(−26+1.5M−30|σ|)(1− cos 4λ)]

Cyζ
10+0.5[(−1.6M +2|σ|)(1+ cos4λ)+

(−1.4M+1.5|σ|)(1− cos 4λ)]

Cnr −500−30M +200|σ|
Cnv smCyv , where:

sm = d−1[1.3+0.1M +0.2(1+ cos 4λ)|σ|+
0.3(1− cos4λ)|σ|− (1.3+m/500)]

Cnζ
s f Cyζ

, where:

s f = d−1[2.6− (1.3+m/500)]

The total velocity vector Vo is the sum of the longitu-

dinal velocity vector U and the sideslip velocity vector

v, i.e. Vo = U + v, with all three vectors lying on the

xy plane (see Figure 1). We assume that U ≫ v, so

that the total incidence σ, or the angle between U and

Vo, can be taken as σ = v/Vo, as sinσ ≈ σ for small

σ. Thus, we have σ = v/Vo = v/
√

v2 +U2, so that the

total incidence is a nonlinear function of the sideslip

velocity and longitudinal velocity, σ = σ(v,U).

The Mach number is obviously defined as M = Vo/a,

where a is the speed of sound. Since Vo =
√

v2 +U2,

the Mach number is also a nonlinear function of

the sideslip velocity and longitudinal velocity, M =
M(v,U).

It follows from the above discussion that all coeffi-

cients in Table 1 can be interpreted as nonlinear func-

tions of three variables: sideslip velocity v, longitudi-

nal velocity U and roll angle λ.

For an equilibrium (v0,r0,ζ0) it is possible to derive

from (1) a linear model in incremental variables, v̄
.
=

v− v0, r̄
.
= r− r0 and ζ̄

.
= ζ− ζ0. In particular, for the

straight level flight (with gravity influence neglected),

we have (v0,r0,ζ0) = (0,0,0), so that the incremen-

tal and absolute variables are numerically identical,

although conceptually different.

2. DESIGN OF LATERAL MISSILE AUTOPILOT

2.1 Control design via fuzzy pole-placement

The general structure of the feedback control law is

given in (2) where x is the state variable vector to be

determined in terms of x and the reference signal.

ua =−K(p)T x (2)

It should be noted that K(p) and in particular the

values of the longitudinal and lateral controllers K1(p)
and K2(p) are obtained using the pole-placement tech-

nique.

Substituting the control law in the state equation yields

ẋ = A(p)∗x with the augmented matrix A∗ to be given

by A∗ = A(p)−BK(p)T . The characteristic equation

of the augmented system can now be determined from

|λI−A(p)∗|
Equating the above mathematical expression of the

characteristic polynomial of the augmented system

with the one of the desired (obtained using the desired

performance characteristics) the coefficients of the

pole-placement controller for each of the local models

are easily obtained.

2.2 Fuzzy Inference System

A Takagi-Sugeno (T-S) fuzzy controller (Tanaka and

Sugeno, 1985) is used to determine the control gains

required for any given Mach and incidence angle in

order to generate a system with a given performance

characteristic. The system has two inputs, Mach and

incidence, and generates three outputs which are the

three control gains required for the PI controller.

The Takagi-Sugeno (T-S) fuzzy controller is com-

posed of r rules that can be represented as:

Plant rule i: If ei is M j and ei is Ik

Then δKni
= Kni

,

i = l,2, . . . r, and n = 1, . . .3,

Where M j and Ik are individual membership functions

of the two inputs and Kni
is the required set of gains

for the rule.



The T-S fuzzy model infers the gains Kni
(t) as the

output of the fuzzy model, given all the rules, as

follows, where νi is the total degree of membership

for rule i.

Kni
=

∑r
i=1 νi[δKni

]

∑r
i=1 νi

(3)

2.3 Tracking control design

This controller would produce a desired transient re-

sponse of all the local models by placing the poles of

all the local systems within a specified area. However

since our aim is good tracking performance for the

missile, we should include into to the design speci-

fication peak overshoot, settling time and zero steady-

state error. Zero steady state error can be achieved with

an integral term in the forward path.

The new augmented model would contain one more

state variable to account for this integral term. This

new state variable is defined as:

xi =
∫ t

t0

edt =
∫ t

t0

(y− r)dt (4)

Therefore,

ẋi = [yd − r] (5)

The state space now is described by:





ẋ

−
ẋi



=

[

A(p) 0

−C 0

][

x

xi

]

+

[

B

0

]

ζ+

[

0

I

]

r (6)

The compensated system therefore becomes:
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 r (7)

The characteristic polynomial of the compensated sys-

tem is then equated with the desired polynomial at

each step to adapt the controller gains.

The compensated system is of one order higher than

the nominal one. This is because of the integral term,

added for tracking purposes. The third pole has to be

placed however in such location that the third order

compensated system to behave similar to a second

order. This add an extra requirement to the selection

of gains for pole placement.

3. MULTI-OBJECTIVE EVOLUTIONARY

ALGORITHM

3.1 Introduction

Evolutionary Algorithms are optimisation procedures

which operate over a number of cycles (generations)

and are designed to mimic the natural selection pro-

cess through evolution and survival of the fittest.

In this paper, a multi-objective evolutionary strat-

egy (Deb, 2001) has been applied for optimising the

fuzzy control surfaces.

3.2 Algorithm structure

The evolutionary strategy begins by generating an ini-

tial population of 50 chromosomes at random with the

standard deviations of the mutations all set initially as

one eighth of the total range of each gene. The initial

population is evaluated and objective values gener-

ated (see section 3.3) and then sorted (section3.4).

Crossover and mutation are then applied to the chro-

mosomes to generate another 50 chromosomes. These

new chromosomes are then evaluated and the best 50

from all 100 chromosomes are chosen for the next

generation. The process is repeated for 100 genera-

tions.

The crossover operation takes each chromosome in

turn (chromosome a), and for each chooses a second

chromosome at random (with replacement) to cross

with (chromosome b). A new chromosome (c) is gen-

erated 70% of the time using (8), and for the remaining

30% of the time, a copy of chromosome a is made. In

(8), ak, bk & ck are gene k of chromosomes a, b & c

and Uk is a uniform random number in the range [0,1]

chosen anew for each gene and each chromosome a.

ck = ak +(bk − ak)(1.5U − 0.25) (8)

The evolutionary strategy updates the standard devi-

ation of the mutation and the value of each gene for

every gene in each new chromosome, using (9). In (9),

σ′
k(x) is the standard deviation of gene k of chromo-

some x, ω′
k(x) is the value of gene k of chromosome x,

N(0,1) is a random number with zero mean and unity

variance Gaussian distribution and is chosen once per

chromosome, Nk(0,1) is a random number with zero

mean and unity variance Gaussian distribution and is

chosen afresh for every gene, and n is the number of

genes in each chromosome.

σ′
k(x) = σk(x)exp(τ0N(0,1)+ τ1Nk(0,1))

ω′
k(x) = ωk(x)+σ′

k(x)Nk(0,1)

τ0 =
1

√

2
√

n

τ1 =
1√
2n

(9)



3.3 Chromosome structure and objectives

Chromosome The chromosome structure needs to

represent both the membership functions for the two

inputs, and the output values for every possible rule.

Three, four and five membership functions have been

used for each of the two inputs. The member functions

are triangular and overlapping to always give a unity

sum as shown in figure 2 For the two inputs, the input

aD bD cD

m=1

e maxe= 0

Fig. 2. Membership function structure

ranges are e0 = 0.6 to em = 6 for the Mach number,

and e0 = 0◦ to em = 30◦ for the incidence. Each of the

genes must lie in the range (0,1].

With n member functions per input, there will be n2

possible rules. The output value for each the rules is

simply a triplet of constants, one for each of the three

outputs. At each Mach–incidence combination, the

three control gains are calculated by evaluating a local

model of the system. The gains calculated by the local

model are then associated with the corresponding rule

and used to create the fuzzy control surface.

Objectives The performance is tested by generating

the step response of the system for 100 uniformly

spaced points in the Mach / incidence domain (10 per

input). The rise time and settling time of the system

are recorded at each point. Two objectives are then

generated that summarise the performance of each

chromosome.

The first objective is taken as the difference between

the slowest and fastest rise times of the 100 trials

for each chromosome. The second objective is the

difference between the slowest and fastest settling

times.

3.4 Non-dominated Ranking

With multiple objectives, a Pareto-optimal set of re-

sults (Deb, 2001) may be formed where no single

solution is better than any other in all objectives. These

solutions are said to be non-dominated as no solution

can be chosen in preference to the others based on

the all objectives alone. There exists a single Pareto-

optimal set of solutions to the problem. At any inter-

mediate stage of optimisation, a set of non-dominated

results will have been identified. This set may or may

not be the Pareto optimal set.

A non-dominated ranking method (Deb, 2001) is used

in the evolutionary algorithm to generate and maintain

a non-dominated set of results. Conventional evolu-

tionary algorithms often use a ranking method where

the calculated objective values are sorted and assigned

a rank that is dependent only upon their position in

the list, rather than their objective value. The ranking

operation helps to prevent premature convergence of

the evolutionary algorithm.

The non-dominated ranking system operates by first

identifying the non-dominated solutions in the popula-

tion and assigning them a rank of one. A dummy value

(1 in this implementation) is assigned to these solu-

tions and a sharing process is applied. With the shar-

ing, the dummy values of the individuals’ are reduced

if they have near neighbours (in the objective space).

The sharing process ensures that a spread of solu-

tions is obtained across the non-dominated front. The

minimum value assigned to the level-one solutions is

identified and then reduced slightly (by 1%) and used

as a dummy value for the next level of processing. The

level-one individuals are removed from the population

and the identification–sharing process repeated on the

remaining set, using the reduced dummy value for the

sharing operation. The ranking process is continued

until all of the individuals have been accounted for.

The resulting objectives are intended to be used with a

maximisation strategy and have been adjusted to allow

both of the objectives to be minimised.

4. SIMULATION RESULTS

Figure 3 shows a set of typical non-dominated sur-

faces after 100 generations for each of the member-

ship function configurations. Both of the objectives

cannot be minimised simultaneously, so the Pareto

front forms curves. All of the solutions on the non-

dominated front are valid solutions to the problem and

it is down to the system designer to choose a single

solution for use in the control system.

Figures 4 and 5 show the locations of the membership

functions for the 3 membership function system (MF

1 and 3 are at zero and 1 respectively). The positions

are sorted to correspond to the order of the points

on the Pareto set, with point 1 corresponding to the

solution in the top left hand corner of the Pareto set.

Figures 6, 7, 8 & 9 show the corresponding plots for

the trials with 4 and 5 membership functions per input.

It is clear from figures 4, 6 & 8 that the Mach input

is dominant when shaping the control surfaces. The

lines on the plots progress smoothly with respect to

the objective surface, whereas figures 5, 7 & 9 have

little correlation with the progression of the objectives.

This effect suggests that fewer membership functions

are required for the incidence input.
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Fig. 3. Pareto set for 5 Membership Functions (MF)

each, 4 MF each and 3 MF each

0 10 20 30 40 50 60 70 80 90 100
0.14

0.16

0.18

0.2

0.22

0.24

0.26

M
F

 P
os

iti
on

Pareto set member

MF locations for Mach, starting with min obj 1

Fig. 4. Membership function locations for Mach and 3

member functions

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
F

 P
os

iti
on

Pareto set member

MF locations for incidence, starting with min obj 1

Fig. 5. Membership function locations for Incidence

and 3 member functions

Figures 10, 11 & 12 show the surfaces generated by

the fuzzy inference systems for the three control gains

for the solution with 5 membership functions in both

inputs that minimises the error in the spread of rise

times.
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Fig. 6. Membership function locations for Mach and 4

member functions
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Fig. 7. Membership function locations for Incidence

and 4 member functions
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member functions

5. CONCLUSIONS

This paper has shown that a fuzzy pole-placement

controller can be designed for complex non-linear sys-

tems to produce given performance over a range of

plant conditions. The use of evolutionary algorithms
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input

to optimise the fuzzy inference system removes the

requirement of expert knowledge to design the fuzzy

landscape as the multi-objective algorithm is capable

of discovering a range of solutions with little designer

intervention. The multi-objective formulation allows

many potential solutions to be generated simultane-

ously. The designer can then choose a candidate solu-

tion whilst being informed of what other solutions to

the problem may exist.

The work shows that for the chosen plant, increasing

the number of membership functions in Mach will

improve performance, while three or four membership

functions for the incidence input would suffice. This

allows the total number of membership functions and

rules used in the system to be minimised, allowing

processing speed to be maximised.
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