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Abstract— Previous work has demonstratedthat Evolutionary
Algorithms (EAs) are an effective tool for the selectionof optimal
pulse repetition fr equency(PRF) setsto minimise range-Doppler
blindness of a medium PRF radar. This paper re-considersthe
conceptsof decodability in medium PRF radar, and how new
and novel schedulescan be generatedusing an EA. Traditionally
target data is required in a minimum of 3 PRFs (e.g. a 3 of 8
scheme).In this paper we describe the generation of schedules
requiring data in only 2 PRFs. Results are presented for a
comparison between schemesrequiring target data in two and
thr ee PRFs. The results indicate that blindness is minimised in
scheduleswith greater numbers of PRFs and requiring target
data in fewer PRFs. The concept of dynamic selection of PRI
schedulesthat are fully decodableand have no blind velocities
is outlined and is concluded to be feasible.

I . INTRODUCTION

Many modernradar systemsuse medium pulse repetition
frequency (PRF)waveformsto measureboth target rangeand
velocity accuratelyand unambiguouslyin the presenceof
clutter. Medium PRFradarspossessexcellentclutter rejection
characteristicswhich renderthemanattractive propositionfor
airborneintercept(AI), fire control systems,groundbasedair
surveillance, weapon locating radar and a variety of other
applications.

A radar using a single medium PRF generateshighly
ambiguousrangeandDopplerdataandsuffers from a number
of blind regions in rangeand velocity. The ambiguitiesmay
be resolved by operatingon N PRFs, typically eight, and
requiring target data in a minimum number, M, typically
three,in what is known as a generallyknown as an M of N
(3 of 8) scheme.The problem becomesone of selecting
suitable combinationsof PRFs to resolve the ambiguities,
minimise the blind zones,avoid blind velocities and reduce
problemsof ghosting,wherebyincompleteresolutionof the
ambiguitiesin the presenceof noisecan leadto falsetargets.

The spreadof PRFs is governed by sound engineering
principles,basedon clutter rejection and target illumination
times. However, the traditional approachto the selectionof
precisevaluesoften results in mediocreradar performance.
Previous work by the authors[1], [2] has shown that it is
possibleto useevolutionaryalgorithmsto automatetheprocess
of generatingnear-optimal PRF setsthat minimise the blind
zonesfor a detailedradarmodel.Thepreviouswork focussed

on generatingboth 3 of 8 and 3 of 9 scheduleswhich are
commonin airborneinterceptradars.This papertakesa fresh
look at the problemsof ambiguityresolutionin mediumPRF
radarandproposesa new andvery novel schemethat requires
only two PRFsfor target detection.

SectionII describesthe factors influencing the choice of
PRFsetsfor a mediumPRFradarandof theproposedtiming
rationale.SectionIII details the conceptof decodabilityand
introduces2 of N schedules.Section IV presentsa radar
modelbasedon an airbornefire control type radar. SectionV
describesthe evolutionary algorithm and how it is applied
to the problem. Section VI discussesissuesinvolved with
optimisingthePRFsetdynamicallyandsectionVII compares
the performanceof 2 of N systemswith the more traditional
3 of N. This paper concludesthat a 2 of 6 system has
betterblind zoneperformancethan a 3 of 8 systemand by
using the evolutionary approach,solutionscan be found that
are fully decodableand avoid blind velocities. The option
of reconfiguringthe PRF set dynamically with changesin
platform motion andclutter backscatteris now possible.

I I . MEDIUM PRF RADAR

A. Introduction

Medium-PRFradar is a compromisesolution designedto
overcome some of the limitations of both low and high-
PRF radar [3]. By operatingabove the low-PRF region, the
ambiguousrepetitionsof the mainbeamclutter spectrummay
besufficiently separatedwithout incurringunreasonablerange
ambiguities.Consequently, the radar is better able to reject
mainbeamclutter throughDoppler filtering without rejecting
too many targets.By operatingbelow the high-PRFregion,
the radar’s ability to contendwith sidelobeclutter in tail-
chaseengagementsis improved.Targetsmaybeextractedfrom
sidelobeclutter using a combinationof Dopplerfiltering and
rangegating.

B. PRF Selection

Each PRF is characterisedby regions of blind velocities
andrangesassociatedwith the Dopplerfiltering of mainbeam
clutter and time gating of sidelobe clutter and associated
eclipsinglosses.Theseblind zonesaredepictedin blackon a
blind zonemap(seeFig. 1).



Multiple burstsof pulsesare requiredin order to perform
targetdetectionandto resolve rangeandDopplerambiguities.
This is achieved by transmittinga numberof PRFs within
the dwell time on target and sequentiallymeasuringand
comparingthe ambiguousinformation received from every
PRF. All the eight PRFsfrom a 3 of 8 systemmust be able
to be transmittedwithin the dwell time, with eachPRFburst
having 64 pulses(64-pointFFT) anda shortperiodof time in
which to changeover PRFs.

The positionsof blind zonesvary with PRF, therefore,by
applying suitablePRFsin a multiple-PRFdetectionscheme,
not only may range and Doppler ambiguitiesbe resolved,
but also the blind zonesmay be staggeredto improve target
visibility. Groundclutter returnsreceived throughthe antenna
sidelobesmaybestrongenoughto overwhelmweaktargetsig-
nals,consequentlyblind rangestendto worsenwith increasing
range.

In theblind zonemapof Fig. 1, theblackshadingrepresents
zoneswherefewer thanM PRFsareclearand,hence,where
theradaris totally blind. Thegrey shadingrepresentsthenear-
blind zoneswhereexactly M PRFsare clear. White regions
representzoneswhere(M+1) or morePRFsareclear.

The selectionof PRFsin a medium PRF set is therefore
basedon the following:

1) A spreadof valueswhich enablethe resolutionof range
andvelocity ambiguities,

2) the minimisationof blind zones,
3) removal of totally blind velocities,
4) ensuringthat the duty cycle yields the desiredaverage

transmittedpower,
5) constraintsimposedby the practical issuesof system

timings, e.g. transmitter duty cycle giving an upper
bound on the allowable PRF, and averagePRI being
constrainedby the target illumination time [4].

The finer the timing resolution of the PRIs, the greater
the number of PRIs within the searchspace.This in turn
increasesthe complexity of finding an optimum PRF set but
also improvesthe performanceof that optimumsolution.

Since the minimisation of blind zones is influenced by
the signal to clutter ratio, it is imperative to have a reliable
model or dataon the natureof the clutter. The exact clutter
characteristicsare likely to be scenariospecific and so one
must either operateusing a PRF set appropriateto averaged
conditionsor optimisethe PRFsetdynamically. In sectionVI
we considerthe latter.

I I I . BASIS OF 2 OF N DECODING

A. Decodability

Previous researchinto extending3 of N methods[1], [2]
have describedautonomousmethodsfor determiningoptimum
3 of N schedules.In general the decodability of M of N
medium PRF waveforms requires(1) & (2) to be satisfied
for all combinationsof M PRFsin the setof N, whereLCM
is the lowest commonmultiple, � max is the maximumrange

and � max is the maximumDopplerbandwidth.

LCM � PRI��� PRI�	��
�

�� PRI�����
� � max� (1)

LCM � PRF��� PRF�	��

�
�� PRF����� � max (2)

For airborneapplications,low-PRF operationwith � ���
will satisfy (1), but not (2). For high-PRFoperation,�����
will satisfy (2), but not (1). For limited rangesof rangeand
Doppler, (1) & (2) canbe satisfiedwith ��� � , for example
in BattlefieldSurveillanceRadar. In the generalcase,�!�"�
doesnot satisfyboth (1) & (2), therefore��#$� is required.

B. 2 of % vs. 3 of %
The minimum number of PRFs in which target data is

requiredin orderto resolve rangeandvelocity ambiguitiesis,
strictly, two. 2 of N schedulesrequirePRFsfor which every
combinationof 2 from the N usedsatisfy (1) & (2). This is
feasibleif the PRI resolutionis very fine sincethis resultsin
a large numberof PRIs / PRFsbetweenthe maximum and
minimum limits and makes the decodabilityrequirementsof
(1) & (2) easierto satisfy. Relatively coarsePRI resolutionof
onerangecell, which is typical of many currentsystems,may
prevent 2 of N schedulessatisfying(1) & (2) and so datais
requiredin a third PRF. This studyassumesPRI resolutionof
10nsandso 2 of N schedulesareviable.

As � is increased,both the probability of detectionand
probabilityof falsealarmreduce.As % increases,it becomes
harderto transmit the % PRFswithin the dwell time on the
target. The moredegreesof freedomareavailable ( %'&(� ),
the better the blindzone performancethat can be achieved
and the greaterthe numberof targets that can be resolved
unambiguously.

IV. THE RADAR MODEL

A radar model based on an airborne fire control type
applicationwas derived to trial the fitnessof PRF sets.The
model assumes10GHz operation,64-point FFT processing,
linear FM pulse compressionachieving a compressionratio
of 14 andthat platform motion compensationis applied.The
maximumtargetvelocity with respectto thegroundwastaken
as 1500 m/s and the maximum rangewas taken to be 185
km (100 nmi). Theseandotheroperationalcharacteristicsare
summarisedin TableI. It is intendedthat themodelshouldbe
representativeof thetypescurrentlyin serviceor aboutto enter
service.Clutter was modelledand resultedin a requirement
to rejectmainbeamclutter and groundmoving targetsover a
band )*�+
 ,.- kHz. Simulationswere performedagainsta 5m�
target andresult in considerableblindnessat long rangesdue
to overwhelming sidelobeclutter. Blindnessis mappedfor
signal-to-clutterratio lessthan1. Largertargetsarelesseasily
swampedby sidelobeclutter and detectionis maintainedat
greaterranges.

We envisageconventionalrangegating into /0
21�354 periods
(=compressedpulsewidth) by virtueof ADC samplingperiods
of /6
 1	354 . Sincethe PRIs are quantisedin multiples of 10ns,
thelastsampleperiod(rangecell) is not likely to becoincident



TABLE I

SUMMARY OF THE RADAR MODEL’ S CHARACTERISTICS

Parameter Value

Carrier frequency 10 GHz

Minimum PRI 35 7 s
Maximum PRI 150 7 s
Transmittedpulsewidth 7 7 s
Compressedpulsewidth 0.5 7 s
Compressiontechnique Linear FM 2 MHz chirp

FFT size 64 bins

Rangeresolution 75m

Blind rangedueto eclipsing 15 rangecells

Duty cycle Variable(0.2 peak)

Antenna3dB beamwidth 3.9˚

Antennascanrate 60˚ /s

Maximum GMT velocity re-
jected

25 m/s

Mainlobe clutter/GMT rejec-
tion notchbandwidth

8
1.67kHz

Maximum target Doppler
8:9<;=;

kHz (1500m/s )

Maximum detectionrange 185.2km (100 nmi)

Clutter backscattercoefficient -20 dB

Target radarcross-section 5 m>

with the end of the receiving period, in the general case.
Therefore,little target energy is likely to reside in the last
rangecell andthe ?A@ in this cell will bedegraded.During the
transmittedpulse the ADC would be reset.Samples1 to 14
coincidewith the -�354 transmittedpulseand so are blanked.
Sample15 coincideswith the transmitto receive changeover
period and is also blanked. The receiver is finally opened
by the beginning of the 16th sampleperiod giving a total
receiver blankingtime of -B
 1	354 . The first rangecell therefore
coincideswith ADC sampleperiod16.Echoesreceivedwithin
the first or last 13 rangecells will be partially eclipseddue
to the overlap of the uncompressedecho (duration of -�354 )
with the receiver blanking period ( �C-.
21�354 ). Thus the SNR
andhencethe ? @ will degradeover the last 13 rangecells of
the receiving periodandwill start low but graduallyimprove
over the first 13 rangecells. Neverthelessvery large targets
may be detectablewithin the last few rangecells. Currently,
blind rangesarecalculatedon thebasisof blindnessextending
throughoutsamples1 to 29 (the beginning of the transmitted
pulseto -.
21�354 after the endof the transmittedpulse).Various
alternative protocolscould be consideredsuchassharingthe
sameblind rangebetweentheendof onereceiving periodand
thestartof thenext. Whilst theoptimisationprocesswill yield
differentPRFs,their total blind zoneperformanceis not likely
to differ significantlyfrom thosefoundby thecurrentscheme.

V. EVOLUTIONARY ALGORITHMS AND THEIR

APPLICATION TO THE PROBLEM

A. Introduction

EvolutionaryAlgorithmsareoptimisationprocedureswhich
operateoveranumberof cycles(generations)andaredesigned

to mimic the naturalselectionprocessthroughevolution and
survival of the fittest [5]. A population of potentialPRFsets
is maintainedby the algorithm. Each potential PRF set is
representedby onechromosome. This is thegeneticdescription
of the solution and may be broken into % sectionscalled
genes. Eachgenerepresentsa single PRF. The threesimple
operationsfound in nature; natural selection, mating and
mutationareusedto generatenew chromosomesandtherefore
new potentialsolutions.

Eachchromosomeis evaluatedat every generationusingan
objective function that is able to distinguishgood solutions
from bad ones and to score their performance.With each
new generation,someof theold chromosomesareremovedto
make room for the new, improved offspring. Despitebeing
very simple to code, requiring no directional or derivative
informationfrom the objective function andbeingcapableof
handlinglarge numbersof parameterssimultaneously, evolu-
tionary algorithmscanachieve excellentresults.

Theradarmodelacceptsa chromosomefrom theevolution-
ary algorithm and decodesit into a set of PRIs.Operational
parametersare passedto the clutter model, which in turn
returnsclutter data.A blind zonemap is createdand target
visibility is determined.The raw visibility datais thenpassed
back to the evolutionary algorithm as the objective value to
drive the evolutionaryprocess.A new generationof potential
PRFsis thenproducedandthe processrepeated.

Eachchromosomeformsa trial solutionto theproblemand
consistsof a set of % genesthat lie in the interval D /0���E� .
Thesegenesare then decodedinto a PRI schedule,which is
thenusedwithin a radarmodelto assesstheschedule’squality
andto ensurethat the schedulemeetscertainconstraints.For
a 2 of N system,the chromosomeis transformedinto a PRI
setby first generatinga set, F , containingall possiblechoices
of PRI (11501 in the example in this paper).The first PRI
is chosenas the GIHKJ PRI with G given by the total numberof
availablePRIs( LML FNLOL ) multiplied by thevalueof thefirst gene,
giving a choice of 1 in 11501.The PRI chosenis removed
from the set F . The remainingset F is now checked and
any PRIs that are not decodablein both rangeand Doppler
with the first PRI chosenare removed from the set F . Any
PRIsthat would alsoleadto a blind velocity arealsopruned.
ThesecondandsubsequentPRIscannow bechosensimilarly,
given the reducedset of F , and reducingthe set accordingly
afterchoosingeachPRI. This processwill ensurethat thePRI
set is fully decodable.If LML FNLOL:�P/ before all the PRIs are
chosen,the objective is set to be totally blind.

The objective function providesa measureof how well an
individual performsin the problemdomain[5]. In this case,
theobjectivefunctionis thetotalareaof theblind zonemap(in
metresHertz) with �RQS� or morePRFsclear. The decoding
processhasalreadyensuredthatthePRFsetis fully decodable
with reducedghostingandno hasblind velocities.

B. Summary

The maximumtransmitterduty cycle (20% ) constrainsthe
maximumacceptablePRF to be 28.57kHz.The width of the



mainbeamclutter rejectionnotch ( )*�+
 ,.- kHz) constrainsthe
minimum PRFto be 6.67kHz,allowing the clutter to occupy
up to a maximumof half the PRF. The PRI constraints,com-
bined with the chromosometransformationalgorithm means
all PRI setsare decodable,retain good target visibility and
arenot proneto blind velocities.Repeatedgenerationsof the
evolutionaryalgorithmoptimisationprocesscontinueto refine
target visibility by minimising blind zones.

VI . DYNAMIC SELECTION OF OPTIMAL PRF SETS

It has been demonstrated[1], [2] that an evolutionary
algorithmcanbeusedto identify optimalor nearoptimalPRI
setsfor the MPRF radarsystem.As the position and extent
of the sidelobeclutter lines changewith altitude,azimuthand
elevation scanangleand anticipatedtarget size, so must the
PRFset to be transmittedin order to keepblind zonesunder
control andto a minimum,possiblyfocusingthe optimisation
to reduceblind zonesin specificregionsto a minimum too.

As the platform conditions (for altitude and pitch etc.)
changerelatively slowly while the radar is in operation,the
evolutionary algorithm can be usedto selecta new average
PRF set every few secondsto accountfor changingaltitude
and velocity. With optimisationof the current code and the
fact that decodable2 of N schedulescan be generatedmore
quickly than 3 of N schedules,optimisationin real time is
imminent.

On-lineoptimisationduringeachscanor evenburst-to-burst
(i.e. dwell-to-dwell) may be possiblewith future processing
capabilities.Not only will dynamicoptimisationprovide the
bestperformancein termsof blindzones,but will alsoimprove
resistanceto detectionby ESM systemsand interruption or
deceptionby countermeasures.

For optimumperformancea goodmodelof sidelobeclutter
is requiredin order to establishthe locationsof the sidelobe
clutter lines. It may be possibleto use previous returns to
estimatethe true clutter distribution, and thereforeuseshort-
term measureddata to form the clutter information for the
differentPRIs in the dynamicoptimisationprocess.

VI I . COMPARISON OF 2 OF % AND 3 OF % SCHEDULES

A. Blind Zone Performance

To assessthe comparative performanceof different PRI
set schemes,representative trials have beenperformedusing
the radar model. One hundredtrials of each method have
beenperformedusingan EA andnearoptimal PRI setshave
beengenerated(for furtherdetailsof the EA andradarmodel
see[2]). Eachtrial usedapopulationof 50 for 100generations.

All blindnessstatisticsare basedon visibility in less than
M+1 PRFsand include blindnessdue to overwhelmingside-
lobe clutter andthe first blind range(alongthe bottomof the
map)andthe first blind velocity (up the left handsideof the
map).Table II summarisesthe results.

It is clear that 2 of 7 is better than 3 of 9. The 2 of 6
scheduleis better than 3 of 8 but worse than 3 of 9. The
2 of 5 scheduleis becomingquite blind. The constraintfor
blind velocity removal is particularlyharshin the 2 of 5 case

TABLE II

TABLE COMPARING BLINDZONE PERFORMANCE OF DIFFERENT T OF U
SCHEMES (100 TRIALS EACH). FIGURES SHOW PERCENTAGE BLIND FOR

EACH SCHEDULE

M of N Min % Max % Mean% Median% V %

2 of 5 66.10 66.73 66.43 66.44 0.1434

3 of 8 58.37 59.91 59.01 59.02 0.2803

2 of 6 56.35 57.70 57.12 57.18 0.3316

3 of 9 53.74 55.02 54.46 54.51 0.2656

2 of 7 48.90 50.24 49.46 49.54 0.3437

2 of 8 44.13 45.21 44.59 44.57 0.2296

and restrictsthe performanceof the 2 of 5 systemseverely.
Decodabilityis simplestto achieve in a 2 of 5 system.

Fig. 1. Blind zonemapfor best3 of 8 solution,5 W > target

Figure 1 shows the blind zone map for the best 3 of 8
solution found. This solution representsthe most common
MPRFschedule.TableIII shows thePRIsused,themeanPRI,
meanduty cycle andrange-Dopplerareathat is blind. For the
radarmodelusedand a 3 of 8 schedule,the meanPRI must
be lessthan ��/+/0
 XY354 (assuming65msdwell time and 1.7ms
lost per PRI in changeover). It is clear that the meanPRI
of the optimisedset is lower than the limit at 88.773 s. The
meanPRI identifiedcould eitherbe usedwith a scanrate of
66.0˚ /s, or deadtime / built-in-testcouldbeaddedat theend
of the set of PRIs,as is usedin many currentradarsystems.
Often the scanrate is determinedby subsequentprocessing
but with phasedarraytechnologybecomingmoreavailablein
airbornesystems,the pressureto allow a variablescanrate is
increasing.

Figure 2 shows the blind zone map for the best 2 of 6
solutionfound.This solutiongivesfewer blind zonesthanthe
3 of 8 solution,yet hastwo fewer PRIs.Table IV detailsthe
limits on meanPRI for differentMPRF schedules.It is clear
thatthemeanPRI couldbemuchhigherfor a 2 of 6 schedule,



TABLE III

PRI SET FOR BEST 3 OF 8 STRATEGY ( 7 S)

63.11 69.97 77.07 81.31 90.06 99.90 109.75119.00

MeanPRI 88.777 s
Meanduty cycle 7.89%

Peakduty cycle 11.09%

Min range/Dopplerblindness(m.Hz)
9=Z ;=[=\=]=^�_`9<;

TABLE IV

RANGE OF MEAN PRI LIMITS FOR DIFFERENT SCHEDULES

Schedule MeanPRI

M of 6 142.77.a
M of 7 118.57.a
M of 8 100.47.a
M of 9 86.37.a

Fig. 2. Blind zonemapfor best2 of 6 solution,5 W > target

allowing a wider rangeof PRIsto be chosen.TableV shows
the PRIs used,the meanPRI, meanduty cycle and range-
Doppler areathat is blind. By chance,the near-optimal set
found has a relatively low meanPRI of 88.873 s, giving a
total dwell time of 44.3ms,rather than the maximum65ms.
Most of this saving is becauseonly six PRFchangeover times
needto be accommodated.The meanPRI identifiedcould be
usedwith a scanrateof 88.0˚ /s.

Figure 3 shows the blind zone map for the best 2 of 7
solutionfound.This solutiongivesfewer blind zonesthanthe
3 of 9 solutiondetailedin [2], yet againhastwo fewer PRIs.
Again it is clear that the meanPRI could be higher for a
2 of 7 schedule,allowing a wider rangeof PRIsto bechosen.
TableVI shows thePRIsused,themeanPRI,meanduty cycle
and range-Dopplerareathat is blind. The meanPRI gives a
total dwell time of 57.3ms,comparedto the maximum65ms.
The meanPRI identified could be usedwith a scanrate of
68.0˚ /s.

TABLE V

PRI SET FOR BEST 2 OF 6 STRATEGY ( 7 S)

64.04 74.53 83.03 92.07 100.75118.80

MeanPRI 88.87 7 s
Meanduty cycle 7.88%

Peakduty cycle 10.93%

Min range/Dopplerblindness(m.Hz)
9=Z ;=bdc�9<^E_`9<;

TABLE VI

PRI SET FOR BEST 2 OF 7 STRATEGY ( 7 S)

73.55 81.03 89.76 99.42 109.50116.46140.17

MeanPRI 101.417 s
Meanduty cycle 6.90%

Peakduty cycle 9.52%

Min range/Dopplerblindness(m.Hz)
]EZ \E9<edcf^�_g]

Fig. 3. Blind zonemapfor best2 of 7 solution,5 W > target

Figure 4 shows the blind zone map for the best 2 of 8
solutionfound.This solutiongivesfar fewer blind zonesthan
the 3 of 8 solution,yet againhasthe samenumberof PRIs.
Table VII shows the PRIs used,the meanPRI, meanduty
cycle and range-Dopplerarea that is blind. The mean PRI
givesa total dwell time of 64.5msandthemeanPRI identified
couldbeusedwith a scanrateof 60.49˚ /s. It is clearthat the
optimisationhasexploited the meanPRI limit to the full.

B. Detection Performance

For a 2 of % system,the probability of detectionis higher
than3 of N asonly 2 PRIs requirea detection.The function
for probability of detectionand falsealarm for � of % and
in the absenceof targetsis given in (3) & (4).

?A@ihkjml n �
op
qOr �
s
Cq ? q@ �<�t&u?v@�� oxw q (3)



TABLE VII

PRI SET FOR BEST 2 OF 8 STRATEGY ( 7 S)

78.92 81.56 86.66 90.46 99.81 111.81117.09128.56

MeanPRI 99.367 s
Meanduty cycle 7.05%

Peakduty cycle 8.87%

Min range/Dopplerblindness(m.Hz) y Z efzdbE9<^�_g]

Fig. 4. Blind zonemapfor best2 of 8 solution,5 W{> target

?v|E}=h~jml n �
op
qMr �
s
Cq ? q
|�} ����&�?v|E}�� oxw q (4)

Thusfor a single ? @ ��/0
21 and ?v|E}�� ��/ w � , ? @ hkjml n for 2 of 7
is 0.94comparedto 0.86for 3 of 8. Unfortunately, theoverall
probability of falsealarmwill increaseasonly two PRFsare
beingusedfor decoding.With theaboveexample,?A|�}fhkjml n for
2 of 7 is

� 
 /�����/ w~� comparedto 10
 X�����/ wk� for 3 of 8. To
correctthe final probability of falsealarmto be equivalentto
the 3 of 8 case,the detectionthresholdmustbe raiseda little
in order to achieve an input falsealarmprobability of ?v|E}��
�Y
 ,��*�E/ w~� , a reductionof ? |�} by a factorof 6. As probability
of false alarm is very sensitive to the changeof threshold,
only a smallchangein thresholdlevel would berequired.This
changewould of coursereducethe probability of detectiona
little, but in generalthe raisingof the thresholdwill make the
probability of detectionand false alarm probabilitiesof the
two approachesvery similar. The 2 of 7 schemethoughstill
hasone lessPRF. This allows longerPRIs to be usedwithin
thedwell, withoutupsettingtheaveragePRI.Thisoftenallows
a clearerblind zonemapto be found thanfor a 3 of 8 system
asthe choiceof PRI is lessconstrained.

It is acknowledgedthat the ghostingperformance,in the
presenceof targets,of 2 of N scheduleswill be worse than
that of 3 of N schedulesand this is the subjectof continued
research.

VI I I . CONCLUSIONS

The evolutionary algorithm can selectnovel 2 of N near-
optimal PRF sets efficiently, with modestcomputing effort
and produce a significant improvement in radar detection
performance.The ‘quality’ of eachset is basedon modelsof
airbornefire control radarand associatedclutter and so each
PRFset is application/scenariospecific.

Repeatedruns of the evolutionary algorithm identify near-
optimal PRF sets which differ marginally from eachother.
Theserepeatsindicate the existenceof several similar local
optimain theproblemspaceandtheability of theevolutionary
algorithmto find them.

The evolutionary algorithm hasoptimisedthe selectionof
2 of N scheduleswhich may be transmittedwithin the target
illumination time.The2 of N schedulesaresimplerto transmit
within the dwell time as overall fewer PRFsare requiredto
achieve thesameblind zoneperformancewhencomparedto a
3 of N system.Typically, with a5m� RCStarget,2 of 8 system
andtheparticularcluttercharacteristicsappliedin themodel,a
14%improvementin total range-Dopplerblindnessis achieved
over a conventional3 of 8 system,with the most noticeable
improvementoccurringat themediumandfardetectionranges
(60 to 150Km), beyondwhich high sidelobeclutter levelsare
the dominantcauseof blindness.

The evolutionaryalgorithmhasalsobeendevelopedto run
quick enoughto allow theoptimisationof the selectionto run
dynamicallyin real time on a modernprocessingsystem.
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