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Abstract— This paper details the application of a Mult- a command guided swarm with the processing for the on-
Objective Cooperative Co-evolutionary On-Line EA (MOC- |ine EA all performed in a ground-based central processor.
COLEA) to the guidance of a swarm of multiple missiles, agaiat Steering demands were communicated up to the missiles
multiple targets. The multi-objective algorithm is used todevelop . . . . . !
a dynamic objective front which is used to trade the spatial with missile s_eeker mforr_natlon communicated back. In the
distribution of missiles at impact, against the time to impat. command guided scenario, each chromosome of the OLEA

Each missile optimises its own performance, based on limite describes a complete guidance scenario for all the missiles
information of the current intended actions of the other missiles. ~ Al| of the missiles are modelled together and the objectives

The decision making process is thus distributed between the can be assessed based on perfect knowledge of the antitipate
missiles giving distributed coordination. behaviour of the missiles’

Results demonstrate the algorithm can form effective leade ) . L ) o
less distributed control for multiple missiles against mutiple This paper details the significant extension of the existing
targets in noisy and environments. work to:

1) Distributed cooperative coevolution with local process
) o ing on each missile giving asynchronous parallel opera-

Current defence procurement strategies are emphasising tjon, rather than a command guided system with a single
maximising performance while minimising cost. Tradititipa processing system ‘on the ground’, and
When engaging fast, manoeuvreable targets, single nsssile) myjtiple missiles against multiple targets,
with highly accurate and therefore expensive seekers hes@ b 3y myii-objective operation in a dynamic co-evolutionary
employed. This paper discusses an approach where multiple " snvironment.
missiles are used, each with a low-cost seeker. The aim is t

use sophisticated guidance and control algorithms to offiee . : S
emerge, yet only requiring low bandwidth communications,

seeker performance short-fall. : . . !
. o for example in this paper each missile broadcasts, ten times
The multiple low cost missiles are flown as a self coordi-

. : : o ger second, the estimated time of impact, estimated impact
nating swarm in an attempt to increase reliability and d!/eran le. index of taraet beina enaaaed and estimated speed at
kill probability. Previous work [1], [2] has demonstratduht ge 9 g engag P

. . ) im . Th nchron nature of th rallel pr in
an On-Line Evolutionary Algorithm (OLEA) can be used tq pact € asynchronous nature ot the paraflel processing
s%stem makes the swarm robust to intermittent communica-

form the cooperative strategy of a command guided SySteﬂon. With each missile carrying its own processing, hegero

against a s_mgle targ_et. . . _neous swarms can be formed very easily using missiles with
In evolutionary guidance, the platform is first flown via a,.

sequence of one or more points in space, before flyin towargdﬁerent performance capabilities, as the missiles ordgch
q P pace, ying Stailed models of themselves and not the other members of

a predicted impact with the target, or a required rendezvoys
) . . . the swarm.
point. The points in space are evolved to generate a flight . . . . .
. ' . . L Section Il describes the missile and guidance model used in
profile that is an optimal solution to a set of objectives and. : : L
. . ) . . this paper, section Il describes the structure and apjdica
constraints. With multiple platforms, the flight profilesnche ; . .
. . ; . . of the MOCCOLEA, section IV describes example scenarios
evolved simultaneously, each flight profile being evolvedevh .
. . . .. and demonstrates the behaviour of the MOCCOLEA swarm
accounting for the intended flight paths of the other missile” . .
: . : uidance and section V concludes.
With the evolutionary guidance approach, for most of the
engagement there is no direct, deterministic path between t . MISSILE MODEL
sensors and the autopilot. Thus the initial stages of thatflig o
path can be independent of the target position and motidAn, Missile Model
allowing different trajectories to be generated easily. The missile model used in this paper is simple, but may
In the previous research, the swarm was developed frdra representative of a low-cost missile. A simple fixed wide-

four missiles engaging a single moving target. The work usééld-of-view Imaging Infra-Red seeker is assumed, and Emp

I. INTRODUCTION

°rhe MOCCOLEA allows complex swarm behaviours to



bang-bang control, creating a non-linear system. The sicendine-of-sight to the target is within® of the velocity vector.

is that the missiles will be gun launched with a muzzle veloci The line-of-sight to the ‘target’ may not be equal to the the

V ~ 600m/s and have no propulsion of their own. Drag idrue seeker pointing angle if the missile is tracking ongear

assumed along with a velocity dependent drag coefficierd. Thut engaging another, or flying towards the way-point.

magnitude of the lateral acceleratian, when the fin is not

in the zero position, is given by (1), whete is a constant _

coefficient of approximately. ~ 98/330 giving 10g lateral A. Introduction

acceleration at a speed of Mach 1. Evolutionary Algorithms are optimisation procedures vihic

operate over a number of cycles (generations) and are askign

ap = L|Vy| @) to mimic the natural selection process through evolutiod an

It is assumed that although the drag is proportional gyrvival of the fittest [4]. Apopulation of M possible solutions
velocity squared, the drag coefficient decreases lineaitly wiS maintained by the algorithm. Each potential solution is
velocity. The resulting longitudinal acceleratiary, is given represented by orgaromosome. This is the genetic description
by (2), where C is a constant coefficient of approximate@rf the solution and may be broken into sections called

C ~0.005, andL, ~ 0.1 is a lift-drag coupling coefficient. 9enes. Each gene represents a single parameter in the problem,
therefore a problem that has eight unknowns, for example,
ag = —C|Vs| = |a|La (2)  would require a chromosome with eight genes to describe it.
The chromosome could be represented as ve@ttwhere the

To keep processing speed high, a simple fixed step int

gration process was used with a time step of 0.1 Seconeﬁgments OT th(_e vector are the genes. Each trial solutianor
single point in the parameter space.

for the missile simulations, and a 0.2 second step for tRe . . . )
The three simple operations found in nature: natural se-

‘internal’ trajectory predictions. If the large step sizeused . . .
) yp g P Ic?ctlon, mating and mutation are used to generate new chro-

with conventional numerical integration of the lateral an . .
- . . . . mosomes and therefore new potential solutions. Each chro-
longitudinal acceleration, a rapid build up of numericabes . . . o
osome is evaluated at every generation usinglaactive

rs in the veloci n ition i r . . T .
oceurs the velocity and position, =0 (3). s used to try tg]unctlon that is able to distinguish good solutions from bad
mitigate many large errors by processing using turn ratbera . ; )

ones and the chromosome’s performance is assighed a score.

than vector addition. . ;
With each new generation, some of the old chromosomes

I1l. ON-LINE EVOLUTIONARY ALGORITHM (OLEA)

[Viri]l = |Vi| +aydt are removed to make room for the new improved offspring.
IV - V4 IR Despite being very simple to code, requiring no d!rect|onal
b A or derivative information from the objective function and
Py, = P+ Vbt (3) being capable of handling a large number of parameters
) o simultaneously, Evolutionary Algorithms can achieve déece
B. Guidance Heuristics results.

As_ the missile only has a simple Infra-Red se(_eker: _onE(. OLEA structure
bearing to target can be generated, and so for simplicity, a ) ) ] ] )
pursuit guidance system has been used [3]. Here the missileThe basic OLEA is described in the algorithm:
simply steers towards the current target position, givem th 1) x = U(“x,#x)
bearing information. When under the control of the MOC- 2) O: = F'(xt, Zt)
COLEA, The missile will steer towards the way-point until 3) Y; = D(x:, O, Z;)
the distance to the way-point increases. The missile withth  4) x} = S(x¢, O¢)
steer towards the current selected target. If the interisdita ~ 5) Xt+1 = H(x}, Zt)
model decides that if the missile steers towards the wagtpoi 6) ¢t =1+ 1, if not end, repeat from step 2.
and then cannot possibly hit the target, the solution is edirk In the algorithm,y; represents the array of chromosomes
as infeasible. If no solution is marked as feasible, the ifrissat timet. In systems where the chromosome is a fixed length
simply heads directly towards the target. Although the il@ss vector, y would be a matrix with one row for each member
is assumed to be estimating target velocity and acceleratiof the population and one column for each gene. The function
and so could easily use more complex laws such as Augmentéd is a random distribution (usually uniform) between the
Proportional Navigation, pursuit guidance often resuttsai upper and lower bounds of each gene value. Thus the first
near tail-chase scenario and as such, the MOCCOLEA wiithe of the algorithm generates a random population for the
have to work much harder in order to provide any usef@LEA.
shaping for the trajectory. The array of objective values and constraint satisfaction
The control surface is assumed to be a fin with bang-bamglices at timet is represented by),. The objectives are
control. The fin is assumed to have a zero latax central pasiticalculated based on the model described by the fundfion
and only moves if the missile’s forward velocity vector ismao the populationy; and the observation of the environméfit
than1° from the estimated line-of sight to the target (or wayi general there will be multiple objectives calculated éach
point). The fin then pulls maximum available latax (1) urtiét member of the population. The algorithm makes the implicit



assumption that the measureméitand the functionF'() are rate may be reduced if the action has not changed, but at the
subject to noise and uncertainty. minimum, a ‘keep alive’ signal should be sent to indicate the
The OLEA output at timet is denoted byY; and is a missile is part of the swarm. The data transmitted is theorect
function of the chromosomeg;, the objective and constraint[A/ «; t; T; |Vi| L; dd;], where M is the missile
valuesO;, the observed state of the environméfitand the identification numberg; is the predicted impact angle; is
model functionD(). In the multiple missile system, the outputhe predicted impact timel; is the index of the target being
is the current best way-point and target index. In a systetim wengaged|v;| is the predicted impact speeb; is the predicted
multiple objectives that evolves a Pareto set, the funciigh lateral acceleration at impact ad; is the predicted miss
is the decision maker that must choose one solution from ttistance.
set to use as the current operating point. Each missile collects the broadcast information from the
The population update is performed by functiff). The other members of the swarm and bases the score of each
function must perform the crossover, mutation and selactishromosome on the predicted collective behaviour of thee=nt
process, providing the selective pressure to drive the lagpuswarm. Objectives such asinimise spread of impact times,
tion towards a good solution. In a multi-objective systehg t minimise longest engagement time, minimise worst latax at
function must generate and maintain an estimate of infagestimpact, maximise spread of impact angles for each target etc.
regions of the Pareto set. The output is a new population iray be used to govern the behaviour of the swarm. Penalties
evaluate in the next generation. may also be applied if the missile seeker is locked onto one
The fifth step use#/ () to create the population ready for thetarget, but it intends to engage another. As the seeker will
next generation by providing a state update if necessany. F@ve to break-lock and reacquire the new target once the
example, if position and velocity and acceleration weredei way-point is passed. There is a risk that the missile will
estimated from acceleration measuremeft§), would update not be able to acquire the new target in time and as such
the position from velocity, and the velocity from acceleat is undesirable behaviour that should be minimised, but not
ready for the next iteration. Ofted/() = 1 is used where discouraged entirely. If all communication is lost with titeer
the chromosome remains unchanged between generations. Missiles, the platform defaults to heading towards theetarg
function H() may also be a local optimisation process tthat the seeker is currently locked to.
allow hybrid and memetic algorithms to be created, where The functionD() which selects the solution to implement is
the chromosome is modified based on the results of a losihply to take the best performing chromosome and use it to
optimisation process. describe the way-point and target to aim at. If the way-pisint
The algorithm is repeated, usually with one generation pextreme and the prediction indicates that the missile celmiho
time increment, until the estimated parameters are no longkee target it it goes via the way-point, the way-point is iggth
required. The framework allows on-line, multiobjectiveylir ~ and the missile aims at the selected target directly. THeulie
species, parallel, memetic and hybrid algorithms, as well hehaviour guarantees a minimum level of performance.
very simple evolutionary algorithms to be represented with The missile demand is then derived by the guidance law

wide range of crossover and mutation strategies. steering towards the way-point or target if the way-point
S . ) is not achievable. The state update functifii{) is unity
C. Multi-Objective Cooperative Coevolutionary OLEA in this application as the way-point and target index are

With parallel cooperative coevolution, each missile run®lative to fixed Earth coordinates, not to the missile body
its own OLEA. The chromosome within each missile is odnd orientation. In the initial populatiod/() is a uniform
the form[z y =z T], where the vectofr y 2] is the random distribution within a region local to the estimated
location of the way-point for the missile affdis the index of engagement envelope. A population of 100 has been used in all
the target to aim at after the way-point is passed. The fanctithe simulations. The functiofi() selects the best 20 solutions
F() of the OLEA contains a simulation of the dynamidor breeding. An approach based on Differential Evolutibh [
behaviour of the missile, given the input chromosome)set is used to generate 80 new solutions to replace the section of
and environmental stat&;. The environmental state consistthe population that was removed.
of: the current estimated missile position, velocity andkes 1) Differential Evolution: Differential Evolution (DE) is an
state; the current estimate of the parameters of the targeblutionary technique that uses mutations that are atlate
of interest; and a set of information from the other missila® the current spatial distribution of the population. The
indicating their current intended action. Each missile taye algorithm generates new chromosomes by adding the weighted
its own uniqueF’(), allowing a set of heterogeneous missiles tdifference between two chromosomes to a third chromosome.
be used to form the swarm, each with a very different dynamit each generation, for each member of the parent popula-
model. It is assumed that a separate data fusion processida, a hew chromosome is generated. Elements of this new
used to capture predicted target data from other missites, a&hromosome are then crossed with the parent chromosome to
possibly other sensors, to create a unified air-picturewatly generate the child chromosome.
targets to be identified uniquely by an index number. The size and direction of the difference between any pair

Each missile broadcasts its current intended action to tbechromosomes is determined by the overall spread of the
other missiles in the swarm ten times each second. The dat@rent population. Thus the DE algorithm self adapts to



the fitness landscape, reducing the size of the mutatiofise solution is partially constrained if the missile is not
automatically as the search converges. In this way, no agpatargeted at the target it was tracking on the last time step. T
probability distribution has to be used for mutation whiclsolution is further partially constrained if the target aunat,

makes the scheme completely self-organising. in conjunction with the information from the other missiles
The trial chromosome); may be described as in (4). does not cause all available targets to be covered. The more
- - - - targets that could be engaged but are left uncovered, therlar
Qr = F(Qo — Q1) + Qe (4)  the constraint imposed.
Where chromosomes),, O, & (. are chosen from the The functior_ﬂ?() is the Qecision maker function. In this_
population without replacement arfd is a scaling factor. paper the decision maker is a rule based system that applies

The crossover process is controlled by a crossover parafdditional preferences to the best 20 members of the popu-
eter C'. The crossover region begins at a randomly choséHion in order to derive a single solution to use as the way-
parameter in the chromosome and then a segment of lengfiNt: The preference rules are (applied in order, reduting
G genes is copied from, to the parent chromosome to2vailable set at each step):
create the child chromosome. If the segment is longer than th 1) If all the solutions are fully constrained, fly straight at
remaining length of the chromosome, the segment is wrapped the target, else remove all the solutions that are fully

to the beginning of the chromosome. The len@ths chosen constrained.
probabilistically and is given by (5). 2) If there is at least 1 solution that covers all the avadabl
- targets with a missile, remove all solutions that do not.
P(G>k)=(C)""",k>0 (5)  3) Ifthere is at least 1 solution that is heading towards the

target that the seeker is locked onto, remove any that are
tracking a different target.
4) Remove any solutions that are dominated (based on
conventional non-domination rather than noisy classifi-
cation)
Take the solution from the remaining set whose way-
point is closest to that used last.

Each missile makes its own decision based on the limited
D. Objective Value Calculation - MOPSEA information passed from the other members of the swarm.

Multiple Objective Probabilistic Sampling Evolutionary-A IV. EXAMPLE APPLICATION
gorﬂhr_n (MOPSEA) [61 ha_s been used_ tp r.ank the ’T‘“'t_'p'e The example simulation has three missiles engaging two
objectives and constraints in order to minimise the objesti

. . - . targets. Figure 1 shows the situation just after launch. The
MOPSEA is designed explicitly for developing Pareto Sefﬁ‘lissiles are launched from the lower edge of the picture and

in noi nvironmen nd allows an im f the noi . .
oisy environments and allows an estimate of the no e represented by crosses, circles and diamonds along the

distribution to be included in the Pareto ranking in order t&ajectorylines The isolated symbols represent the toway

E‘namgam tl?_e n0|st);1 Zare':/?o‘;‘)usrfé;?' L|kte rr;lany to(tjhf r Par 8ints of each missile, and the stars are the current latafio
ased ranking methods, 'S NOTWEH Sulted Tor many, targets. The dotted lines are the predicted trajestarie

objective problems where the Pareto dominance mechaniﬁ{g missiles and targets, the solid lines indicate thedtajies

becomes the minor drive for evolution [7]. Thus only tWOactually flown. Figure 2 shows the noisy objective surface

Obl.eCt!VeS have been used in t.h.'s e_xample. To allow ﬂé? the same time instant (using the same symbol key as the
objective surface to adapt, no elitism is used and the entwﬁ

T . ssiles). It is clear that there is little convergence so fa
populatlon_ 'S re-ranked each generation. . The data fused sensor system of the missiles’ was simulated
Co_nstramed _s;olutlons are ranked lower than unconstralrﬁgenerating perfect knowledge of the target locatioroaiey
solut|‘o_ns,, z_ind n an prder based on the degree of constra d acceleration, and then corrupting the data with Gaussia
Any_t|es in_constraint value are brokt_an based on Pare oise. Thus the forward predictions of the missiles vary-con
dominance. Thus the constraint rank is enforced over t ﬁjerably with each time step. The aerodynamic coefficients
Pareto raf‘k- . N used in each of the local simulation models were corrupted
Two objectives are presented in this paper: by up to 10% from the true values used in the main missile
1) Maximise the spread of impact angles over all missimulation, thus introducing further errors and uncetgginto
siles aiming at my target; if only one missile — ongnhe predicted impact conditions.
target, minimise the impact angle to force a head-on- Figures 3, 5, 7 & 9 and 4, 6, 8 & 10 show the scenario and
engagement. objectives at stages through the engagement. It is clear tha
2) minimise the remaining flight time to impact. the missiles are engaging both targets. The intercept single
The two objectives place conflicting requirements on there not as wide as we would have liked, it appears this is
missile, leading to a trade-off surface. The solution issidn partly due to the range of the engagement as the missiles are
ered totally constrained ifd; > 50 (i.e. definitely a miss). stretched to near their maximum limit, and partly due to only

In general, the scaling parametét and the crossover
parameterC' lie in the range[0.5,1]. Small values of F
mean that the population spread reduces faster implyirigrfas
convergence. However the faster convergence is more likely
result in the algorithm converging quickly atlecal minima,
rather than thelobal minima. We have found that values of )
F =0.7andC = 0.5 are suitable for this application.



MOCCOLEA, Time 0.1 seconds
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using pursuit guidance. The range limit and pursuit guiéan
is the reason for the second (turning) target being engagec
a tail chase, rather than head on.

It should also be noted that in the initial phase of th

engagement, all the missiles are targeting the same targ...

Quickly, the missiles represented by a circle and a diamond
aim at the upper target, with the missile represented by
crosses aimed at the lower target. This situation persists f

5000

MOCCOLEA, Time 1.5 seconds

the diamond and the circle have swapped, remaining in this
formation to impact. The spread of possible way-points itequ
/ 00 | wide for all the missiles throughout the engagement: a prbdu
of the multi-objective ranking process.
These results show that even in adverse scenarios, the
MOCCOLEA is able to adapt to find a workable solution,
even if it is not wholly desirable.
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a short while, but by 3 seconds, the missiles represented byt has been observed that although for each missile the noisy
the diamond and the cross have swapped. By 4.5 secorféseto set is not very crisp or widespread, there are often tw



MOCCOLEA, Time 3.0 seconds
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quite smooth with little switching of the actuator. In priaat

regions of valid solutions existing in the objective spamee systems, low actuator switching reduces power consumption
for each target. By maintaining solutions from each regibe, and improves actuator reliability.

missile is able to swap targets very rapidly and still havearn
optimal guidance solution. Figure 4 shows this behaviotin wi

V. CONCLUSIONS

a set of crosses to the right, and another set amongst thescirc Even with highly non-linear systems subject to high levels
and diamonds. This bi-modal behaviour often results in dne af noise and uncertainty, the MOCCOLEA approach provides
the sets being dominated and being gradually removed framcomprehensive framework allowing multiple missiles to
the population. Having the decision making process gréyluatoordinate attacks on single or multiple targets. This show
refine the set ofnteresting targets and then selecting the wayelearly that the method is tolerant of complexity and many
point closest to the last point, causes the trajectorieseto $ources of error.



MOCCOLEA, Time 5.9 seconds
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The parallel distributed processing allows todays higbesp
processors to be exploited to the full. The larger the pdjpria
size used, and the more accurate the missile simulatioas, th
better the guidance will perform. As each missile only has to
predict its own behaviour, swarms of heterogeneous swarms
can be formed very easily.

The use of the multi-objective formulation allows a spec-
trum of possible guidance solutions to exist within the pop-
ulation. The on-line decision making process is then used to
select one single solution as the operating point for thesor

generation. This decision making framework is unusual as

many decisions need to be made every second, rather than
one single decision overall. The results show that rapidiren-
decision making is indeed possible, but not a trivial proble
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