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Abstract— This paper details the application of a Multi-
Objective Cooperative Co-evolutionary On-Line EA (MOC-
COLEA) to the guidance of a swarm of multiple missiles, against
multiple targets. The multi-objective algorithm is used todevelop
a dynamic objective front which is used to trade the spatial
distribution of missiles at impact, against the time to impact.

Each missile optimises its own performance, based on limited
information of the current intended actions of the other missiles.
The decision making process is thus distributed between the
missiles giving distributed coordination.

Results demonstrate the algorithm can form effective leader-
less distributed control for multiple missiles against multiple
targets in noisy and environments.

I. I NTRODUCTION

Current defence procurement strategies are emphasising
maximising performance while minimising cost. Traditionally,
When engaging fast, manoeuvreable targets, single missiles
with highly accurate and therefore expensive seekers have been
employed. This paper discusses an approach where multiple
missiles are used, each with a low-cost seeker. The aim is to
use sophisticated guidance and control algorithms to offset the
seeker performance short-fall.

The multiple low cost missiles are flown as a self coordi-
nating swarm in an attempt to increase reliability and overall
kill probability. Previous work [1], [2] has demonstrated that
an On-Line Evolutionary Algorithm (OLEA) can be used to
form the cooperative strategy of a command guided system
against a single target.

In evolutionary guidance, the platform is first flown via a
sequence of one or more points in space, before flying towards
a predicted impact with the target, or a required rendezvous
point. The points in space are evolved to generate a flight
profile that is an optimal solution to a set of objectives and
constraints. With multiple platforms, the flight profiles can be
evolved simultaneously, each flight profile being evolved while
accounting for the intended flight paths of the other missiles.

With the evolutionary guidance approach, for most of the
engagement there is no direct, deterministic path between the
sensors and the autopilot. Thus the initial stages of the flight
path can be independent of the target position and motion,
allowing different trajectories to be generated easily.

In the previous research, the swarm was developed from
four missiles engaging a single moving target. The work used

a command guided swarm with the processing for the on-
line EA all performed in a ground-based central processor.
Steering demands were communicated up to the missiles,
with missile seeker information communicated back. In the
command guided scenario, each chromosome of the OLEA
describes a complete guidance scenario for all the missiles.
All of the missiles are modelled together and the objectives
can be assessed based on perfect knowledge of the anticipated
behaviour of the missiles’.

This paper details the significant extension of the existing
work to:

1) Distributed cooperative coevolution with local process-
ing on each missile giving asynchronous parallel opera-
tion, rather than a command guided system with a single
processing system ‘on the ground’, and

2) multiple missiles against multiple targets,
3) multi-objective operation in a dynamic co-evolutionary

environment.

The MOCCOLEA allows complex swarm behaviours to
emerge, yet only requiring low bandwidth communications,
for example in this paper each missile broadcasts, ten times
per second, the estimated time of impact, estimated impact
angle, index of target being engaged and estimated speed at
impact. The asynchronous nature of the parallel processing
system makes the swarm robust to intermittent communica-
tion. With each missile carrying its own processing, heteroge-
neous swarms can be formed very easily using missiles with
different performance capabilities, as the missiles only need
detailed models of themselves and not the other members of
the swarm.

Section II describes the missile and guidance model used in
this paper, section III describes the structure and application
of the MOCCOLEA, section IV describes example scenarios
and demonstrates the behaviour of the MOCCOLEA swarm
guidance and section V concludes.

II. M ISSILE MODEL

A. Missile Model

The missile model used in this paper is simple, but may
be representative of a low-cost missile. A simple fixed wide-
field-of-view Imaging Infra-Red seeker is assumed, and simple



bang-bang control, creating a non-linear system. The scenario
is that the missiles will be gun launched with a muzzle velocity
V � 600m=s and have no propulsion of their own. Drag is
assumed along with a velocity dependent drag coefficient. The
magnitude of the lateral acceleration,a

l

, when the fin is not
in the zero position, is given by (1), whereL is a constant
coefficient of approximatelyL � 98=330 giving 10g lateral
acceleration at a speed of Mach 1.
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It is assumed that although the drag is proportional to
velocity squared, the drag coefficient decreases linearly with
velocity. The resulting longitudinal acceleration,a

f

, is given
by (2), where C is a constant coefficient of approximately
C � 0:005, andL

d

� 0:1 is a lift-drag coupling coefficient.
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To keep processing speed high, a simple fixed step inte-
gration process was used with a time step of 0.1 seconds
for the missile simulations, and a 0.2 second step for the
‘internal’ trajectory predictions. If the large step size is used
with conventional numerical integration of the lateral and
longitudinal acceleration, a rapid build up of numerical errors
occurs in the velocity and position, so (3) is used to try to
mitigate many large errors by processing using turn rates rather
than vector addition.
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B. Guidance Heuristics

As the missile only has a simple Infra-Red seeker, only
bearing to target can be generated, and so for simplicity, a
pursuit guidance system has been used [3]. Here the missile
simply steers towards the current target position, given the
bearing information. When under the control of the MOC-
COLEA, The missile will steer towards the way-point until
the distance to the way-point increases. The missile will then
steer towards the current selected target. If the internal missile
model decides that if the missile steers towards the way-point,
and then cannot possibly hit the target, the solution is marked
as infeasible. If no solution is marked as feasible, the missile
simply heads directly towards the target. Although the missile
is assumed to be estimating target velocity and acceleration
and so could easily use more complex laws such as Augmented
Proportional Navigation, pursuit guidance often results in a
near tail-chase scenario and as such, the MOCCOLEA will
have to work much harder in order to provide any useful
shaping for the trajectory.

The control surface is assumed to be a fin with bang-bang
control. The fin is assumed to have a zero latax central position
and only moves if the missile’s forward velocity vector is more
than1Æ from the estimated line-of sight to the target (or way-
point). The fin then pulls maximum available latax (1) until the

line-of-sight to the target is within1Æ of the velocity vector.
The line-of-sight to the ‘target’ may not be equal to the the
true seeker pointing angle if the missile is tracking one target
but engaging another, or flying towards the way-point.

III. O N-L INE EVOLUTIONARY ALGORITHM (OLEA)

A. Introduction

Evolutionary Algorithms are optimisation procedures which
operate over a number of cycles (generations) and are designed
to mimic the natural selection process through evolution and
survival of the fittest [4]. Apopulation of M possible solutions
is maintained by the algorithm. Each potential solution is
represented by onechromosome. This is the genetic description
of the solution and may be broken inton sections called
genes. Each gene represents a single parameter in the problem,
therefore a problem that has eight unknowns, for example,
would require a chromosome with eight genes to describe it.
The chromosome could be represented as vector

�!

Q where the
elements of the vector are the genes. Each trial solution forms
a single point in the parameter space.

The three simple operations found in nature: natural se-
lection, mating and mutation are used to generate new chro-
mosomes and therefore new potential solutions. Each chro-
mosome is evaluated at every generation using anobjective
function that is able to distinguish good solutions from bad
ones and the chromosome’s performance is assigned a score.
With each new generation, some of the old chromosomes
are removed to make room for the new improved offspring.
Despite being very simple to code, requiring no directional
or derivative information from the objective function and
being capable of handling a large number of parameters
simultaneously, Evolutionary Algorithms can achieve excellent
results.

B. OLEA structure

The basic OLEA is described in the algorithm:
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6) t = t+ 1, if not end, repeat from step 2.
In the algorithm,�

t

represents the array of chromosomes
at time t. In systems where the chromosome is a fixed length
vector,� would be a matrix with one row for each member
of the population and one column for each gene. The function
U() is a random distribution (usually uniform) between the
upper and lower bounds of each gene value. Thus the first
line of the algorithm generates a random population for the
OLEA.

The array of objective values and constraint satisfaction
indices at timet is represented byO

t

. The objectives are
calculated based on the model described by the functionF (),
the population�

t

and the observation of the environmentZ

t

.
In general there will be multiple objectives calculated foreach
member of the population. The algorithm makes the implicit



assumption that the measurementZ

t

and the functionF () are
subject to noise and uncertainty.

The OLEA output at timet is denoted byY
t

and is a
function of the chromosomes�

t

, the objective and constraint
valuesO

t

, the observed state of the environmentZ

t

and the
model functionD(). In the multiple missile system, the output
is the current best way-point and target index. In a system with
multiple objectives that evolves a Pareto set, the functionD()

is the decision maker that must choose one solution from the
set to use as the current operating point.

The population update is performed by functionS(). The
function must perform the crossover, mutation and selection
process, providing the selective pressure to drive the popula-
tion towards a good solution. In a multi-objective system, the
function must generate and maintain an estimate of interesting
regions of the Pareto set. The output is a new population to
evaluate in the next generation.

The fifth step usesH() to create the population ready for the
next generation by providing a state update if necessary. For
example, if position and velocity and acceleration were being
estimated from acceleration measurements,H() would update
the position from velocity, and the velocity from acceleration
ready for the next iteration. OftenH() = 1 is used where
the chromosome remains unchanged between generations. The
function H() may also be a local optimisation process to
allow hybrid and memetic algorithms to be created, where
the chromosome is modified based on the results of a local
optimisation process.

The algorithm is repeated, usually with one generation per
time increment, until the estimated parameters are no longer
required. The framework allows on-line, multiobjective, multi-
species, parallel, memetic and hybrid algorithms, as well as
very simple evolutionary algorithms to be represented witha
wide range of crossover and mutation strategies.

C. Multi-Objective Cooperative Coevolutionary OLEA

With parallel cooperative coevolution, each missile runs
its own OLEA. The chromosome within each missile is of
the form [x y z T ℄, where the vector[x y z℄ is the
location of the way-point for the missile andT is the index of
the target to aim at after the way-point is passed. The function
F () of the OLEA contains a simulation of the dynamic
behaviour of the missile, given the input chromosome set�

t

and environmental stateZ
t

. The environmental state consists
of: the current estimated missile position, velocity and seeker
state; the current estimate of the parameters of the target
of interest; and a set of information from the other missiles
indicating their current intended action. Each missile mayhave
its own uniqueF (), allowing a set of heterogeneous missiles to
be used to form the swarm, each with a very different dynamic
model. It is assumed that a separate data fusion process is
used to capture predicted target data from other missiles, and
possibly other sensors, to create a unified air-picture, allowing
targets to be identified uniquely by an index number.

Each missile broadcasts its current intended action to the
other missiles in the swarm ten times each second. The data

rate may be reduced if the action has not changed, but at the
minimum, a ‘keep alive’ signal should be sent to indicate the
missile is part of the swarm. The data transmitted is the vector
[M �
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℄, whereM is the missile
identification number,�

i

is the predicted impact angle,t
i

is
the predicted impact time,T

i

is the index of the target being
engaged,jv

i

j is the predicted impact speed,L
i

is the predicted
lateral acceleration at impact andÆd

i

is the predicted miss
distance.

Each missile collects the broadcast information from the
other members of the swarm and bases the score of each
chromosome on the predicted collective behaviour of the entire
swarm. Objectives such asminimise spread of impact times,
minimise longest engagement time, minimise worst latax at
impact, maximise spread of impact angles for each target etc.
may be used to govern the behaviour of the swarm. Penalties
may also be applied if the missile seeker is locked onto one
target, but it intends to engage another. As the seeker will
have to break-lock and reacquire the new target once the
way-point is passed. There is a risk that the missile will
not be able to acquire the new target in time and as such
is undesirable behaviour that should be minimised, but not
discouraged entirely. If all communication is lost with theother
missiles, the platform defaults to heading towards the target
that the seeker is currently locked to.

The functionD() which selects the solution to implement is
simply to take the best performing chromosome and use it to
describe the way-point and target to aim at. If the way-pointis
extreme and the prediction indicates that the missile cannot hit
the target it it goes via the way-point, the way-point is ignored
and the missile aims at the selected target directly. This default
behaviour guarantees a minimum level of performance.

The missile demand is then derived by the guidance law
steering towards the way-point or target if the way-point
is not achievable. The state update functionH() is unity
in this application as the way-point and target index are
relative to fixed Earth coordinates, not to the missile body
and orientation. In the initial population,U() is a uniform
random distribution within a region local to the estimated
engagement envelope. A population of 100 has been used in all
the simulations. The functionS() selects the best 20 solutions
for breeding. An approach based on Differential Evolution [5]
is used to generate 80 new solutions to replace the section of
the population that was removed.

1) Differential Evolution: Differential Evolution (DE) is an
evolutionary technique that uses mutations that are related
to the current spatial distribution of the population. The
algorithm generates new chromosomes by adding the weighted
difference between two chromosomes to a third chromosome.
At each generation, for each member of the parent popula-
tion, a new chromosome is generated. Elements of this new
chromosome are then crossed with the parent chromosome to
generate the child chromosome.

The size and direction of the difference between any pair
of chromosomes is determined by the overall spread of the
current population. Thus the DE algorithm self adapts to



the fitness landscape, reducing the size of the mutations
automatically as the search converges. In this way, no separate
probability distribution has to be used for mutation which
makes the scheme completely self-organising.

The trial chromosome~Q
t

may be described as in (4).

~

Q

t

= F (

~

Q

a

�

~

Q

b

) +

~

Q



(4)

Where chromosomes~Q
a

, ~

Q

b

& ~

Q



are chosen from the
population without replacement andF is a scaling factor.

The crossover process is controlled by a crossover param-
eter C. The crossover region begins at a randomly chosen
parameter in the chromosome and then a segment of length
G genes is copied from~Q

t

to the parent chromosome to
create the child chromosome. If the segment is longer than the
remaining length of the chromosome, the segment is wrapped
to the beginning of the chromosome. The lengthG is chosen
probabilistically and is given by (5).

P (G � k) = (C)

k�1

; k > 0 (5)

In general, the scaling parameterF and the crossover
parameterC lie in the range[0:5; 1℄. Small values of F
mean that the population spread reduces faster implying faster
convergence. However the faster convergence is more likelyto
result in the algorithm converging quickly at alocal minima,
rather than theglobal minima. We have found that values of
F = 0:7 andC = 0:5 are suitable for this application.

D. Objective Value Calculation - MOPSEA

Multiple Objective Probabilistic Sampling Evolutionary Al-
gorithm (MOPSEA) [6] has been used to rank the multiple
objectives and constraints in order to minimise the objectives.
MOPSEA is designed explicitly for developing Pareto sets
in noisy environments and allows an estimate of the noise
distribution to be included in the Pareto ranking in order to
maintain the noisy Pareto surface. Like many other Pareto
based ranking methods, MOPSEA is not well suited for many-
objective problems where the Pareto dominance mechanism
becomes the minor drive for evolution [7]. Thus only two
objectives have been used in this example. To allow the
objective surface to adapt, no elitism is used and the entire
population is re-ranked each generation.

Constrained solutions are ranked lower than unconstrained
solutions, and in an order based on the degree of constraint.
Any ‘ties’ in constraint value are broken based on Pareto
dominance. Thus the constraint rank is enforced over the
Pareto rank.

Two objectives are presented in this paper:

1) Maximise the spread of impact angles over all mis-
siles aiming at my target; if only one missile – one
target, minimise the impact angle to force a head-on-
engagement.

2) minimise the remaining flight time to impact.

The two objectives place conflicting requirements on the
missile, leading to a trade-off surface. The solution is consid-
ered totally constrained ifÆd

i

> 50 (i.e. definitely a miss).

The solution is partially constrained if the missile is not
targeted at the target it was tracking on the last time step. The
solution is further partially constrained if the target aimed at,
in conjunction with the information from the other missiles,
does not cause all available targets to be covered. The more
targets that could be engaged but are left uncovered, the larger
the constraint imposed.

The functionD() is the decision maker function. In this
paper the decision maker is a rule based system that applies
additional preferences to the best 20 members of the popu-
lation in order to derive a single solution to use as the way-
point. The preference rules are (applied in order, reducingthe
available set at each step):

1) If all the solutions are fully constrained, fly straight at
the target, else remove all the solutions that are fully
constrained.

2) If there is at least 1 solution that covers all the available
targets with a missile, remove all solutions that do not.

3) If there is at least 1 solution that is heading towards the
target that the seeker is locked onto, remove any that are
tracking a different target.

4) Remove any solutions that are dominated (based on
conventional non-domination rather than noisy classifi-
cation)

5) Take the solution from the remaining set whose way-
point is closest to that used last.

Each missile makes its own decision based on the limited
information passed from the other members of the swarm.

IV. EXAMPLE APPLICATION

The example simulation has three missiles engaging two
targets. Figure 1 shows the situation just after launch. The
missiles are launched from the lower edge of the picture and
are represented by crosses, circles and diamonds along the
trajectory lines. The isolated symbols represent the top 20way-
points of each missile, and the stars are the current location of
the targets. The dotted lines are the predicted trajectories of
the missiles and targets, the solid lines indicate the trajectories
actually flown. Figure 2 shows the noisy objective surface
at the same time instant (using the same symbol key as the
missiles). It is clear that there is little convergence so far.

The data fused sensor system of the missiles’ was simulated
by generating perfect knowledge of the target location, velocity
and acceleration, and then corrupting the data with Gaussian
noise. Thus the forward predictions of the missiles vary con-
siderably with each time step. The aerodynamic coefficients
used in each of the local simulation models were corrupted
by up to 10% from the true values used in the main missile
simulation, thus introducing further errors and uncertainty into
the predicted impact conditions.

Figures 3, 5, 7 & 9 and 4, 6, 8 & 10 show the scenario and
objectives at stages through the engagement. It is clear that
the missiles are engaging both targets. The intercept angles
are not as wide as we would have liked, it appears this is
partly due to the range of the engagement as the missiles are
stretched to near their maximum limit, and partly due to only
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Fig. 1. Scenario just after launch
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Fig. 2. Objectives just after launch

using pursuit guidance. The range limit and pursuit guidance
is the reason for the second (turning) target being engaged as
a tail chase, rather than head on.

It should also be noted that in the initial phase of the
engagement, all the missiles are targeting the same target.
Quickly, the missiles represented by a circle and a diamond
aim at the upper target, with the missile represented by
crosses aimed at the lower target. This situation persists for
a short while, but by 3 seconds, the missiles represented by
the diamond and the cross have swapped. By 4.5 seconds,

the diamond and the circle have swapped, remaining in this
formation to impact. The spread of possible way-points is quite
wide for all the missiles throughout the engagement: a product
of the multi-objective ranking process.

These results show that even in adverse scenarios, the
MOCCOLEA is able to adapt to find a workable solution,
even if it is not wholly desirable.
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Fig. 3. Scenario during engagement at 1.5 seconds
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Fig. 4. Scenario during engagement at 1.5 seconds

It has been observed that although for each missile the noisy
Pareto set is not very crisp or widespread, there are often two
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Fig. 5. Scenario during engagement at 3 seconds
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Fig. 6. Scenario during engagement at 3 seconds

regions of valid solutions existing in the objective space,one
for each target. By maintaining solutions from each region,the
missile is able to swap targets very rapidly and still have a near
optimal guidance solution. Figure 4 shows this behaviour with
a set of crosses to the right, and another set amongst the circles
and diamonds. This bi-modal behaviour often results in one of
the sets being dominated and being gradually removed from
the population. Having the decision making process gradually
refine the set ofinteresting targets and then selecting the way-
point closest to the last point, causes the trajectories to be
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Fig. 7. Scenario during engagement at 4.5 seconds

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10

180 − angle error

T
im

e 
to

 im
pa

ct

Objective Space, Time 4.5 seconds

Copyright   2003 Cranfield University

Fig. 8. Scenario during engagement at 4.5 seconds

quite smooth with little switching of the actuator. In practical
systems, low actuator switching reduces power consumption
and improves actuator reliability.

V. CONCLUSIONS

Even with highly non-linear systems subject to high levels
of noise and uncertainty, the MOCCOLEA approach provides
a comprehensive framework allowing multiple missiles to
coordinate attacks on single or multiple targets. This shows
clearly that the method is tolerant of complexity and many
sources of error.
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Fig. 9. Final trajectories at 5.9 seconds
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Fig. 10. Final trajectories at 5.9 seconds

The parallel distributed processing allows todays high-speed
processors to be exploited to the full. The larger the population
size used, and the more accurate the missile simulations, the
better the guidance will perform. As each missile only has to
predict its own behaviour, swarms of heterogeneous swarms
can be formed very easily.

The use of the multi-objective formulation allows a spec-
trum of possible guidance solutions to exist within the pop-
ulation. The on-line decision making process is then used to
select one single solution as the operating point for the current

generation. This decision making framework is unusual as
many decisions need to be made every second, rather than
one single decision overall. The results show that rapid on-line
decision making is indeed possible, but not a trivial problem.
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