
Checkers using a Co-evolutionary On-Line Evolutionary Algorithm
Evan J. Hughes

Dept. Aerospace, Power & Sensors,
Cranfield University, RMCS, Shrivenham,

Swindon, UK. SN6 8LA
ejhughes@iee.org

Abstract- The game of checkers has been well studied
and many computer players exist. The vast majority of
these ‘software opponents’ use a minimax strategy com-
bined with an evaluation function to expand game tree
for a number of moves ahead and estimate the quality of
the pending moves.

In this paper, an alternative approach is described
where an on-line evolutionary algorithm is used to co-
evolve move sets for both players in the game, playing
the entire length of the game tree for each evaluation,
thus avoiding the need for the minimax strategy or an
evaluation function.

The on-line evolutionary algorithm operates in
essence as a ‘directed’ Monte-Carlo search process and
although demonstrated on the game of checkers, could
potentially be used to play games with a larger branch-
ing factor such as go.

1 Introduction

Traditionally, most computer game-playing engines have
been based on the minimax strategy [1]. According to Shan-
non [1] if we can enumerate the number of routes open to
the player to score a win, minus the number of routes that
would lead the opponent to win for each of the possible
moves from the current board state, we could select the opti-
mal move to make at each stage of the game. Unfortunately
there are far too many possible routes to win/loss/draw to al-
low the expectation of the outcome to be evaluated exactly.

The minimax strategy expands the game tree for a num-
ber of ply (10 will give strong play in checkers, but the
deeper the better), and then evaluates the leaf nodes using an
evaluation function as an approximation of the expectation
that the board state can lead to a win. Minimax always as-
sumes that the opponent will make the worst possible move
against the computer player, therefore the path through the
game tree that leads to the best guaranteed payoff is taken.
The strategy is very cautious, with no risk-taking in play.
Other effects such as the limited search horizon can pro-
long games by the algorithm not seeing promising moves
that occur after a prolonged period of play. Additionally if
the minimax search indicates that sacrificing a piece may
not be detrimental to a win in the future, the algorithm is
quite likely to sacrifice a piece immediately, when another
move may look more promising to a human player. The
overall result is that the minimax algorithm leads to game-
play that is quite mechanical in nature and not necessarily
very pleasing to a human opponent. Yet the minimax al-
gorithm is extremely effective even with limited processing
resources.

As the evaluation function can only ever be a sub-
optimal approximation of the true expected value of a board
state, much effort has been employed to make the minimax
search more efficient in order to descend deeper into the
game tree. The design of the evaluation function however
remains critical to the performance of the player. Many tra-
ditional hand-tuned evaluation functions exist, based on ex-
pert knowledge (for example [1, 2]). Very successful eval-
uation functions based on artificial neural networks have
also been developed through the use of evolutionary algo-
rithms [3]. These evolutionary approaches evolve the eval-
uation function off-line using a process of co-evolution by
playing neural networks from within the same evolutionary
algorithm population against each other. The best neural
network that results after a period of evolution is then built
into the game-playing structure as the evaluation function.

A complementary approach to deciding ‘which move
should I make next’ is based on a direct Monte-Carlo eval-
uation of the expectation of a win for each of the available
moves. Minimax and evaluation functions do not feature
as the Monte-Carlo approach makes sequences of random
moves until the leaves of the game tree are reached. Over
many Monte-Carlo trials based on random moves, the num-
ber of wins minus the number of draws is calculated and
the probability of each move leading to a win can be as-
sessed (Abramson’s expected outcome [4]). The Monte-
Carlo methods are being used very successfully in go [5],
but often tens of thousands of Monte-Carlo trials are used at
each board location making the process slow.

In this paper an alternative approach is investigated
where an on-line evolutionary algorithm (OLEA) is used to
co-evolve a direct path through the game tree. The key dif-
ference between the Monte-Carlo methods and the on-line
evolutionary algorithm is that the games are not played en-
tirely at random, but are encoded in the chromosomes of the
OLEA and evolved.

Two populations are used, one to represent the player
who wishes to know the next move to play, and the other
represents the opponent player. Each chromosome does not
represent a means of assessing the current board state as in
conventional game-playing algorithms (such as via an ar-
tificial neural network), but a single path from the current
move, right through to a terminal leaf on the game tree giv-
ing a true win/draw/lose decision. The maximum number
of genes is set by a draw being declared after 100 moves for
each player, thus initially each chromosome has 100 genes,
one to represent the move to make at each turn.

Co-evolution is used between the two populations to try
to evolve an effective play sequence. Although the sam-
pling at the leaves of the game-tree is exceptionally sparse,



the hypothesis is that the genes which are soon to be used
should still represent good moves that lead to reasonably
promising regions of game-play. The second population is
needed to provide an opponent to allow move sequences
to be evaluated. The concept is to exploit co-evolution to
evolve ‘tough’ sequences to play against, hopefully gener-
ating sequences that are stronger than the true opponent,
leading to evolution of a playing sequence that will score
a win.

As the entire game-tree is examined, it is hoped that the
‘horizon effects’ seen with minimax play will not be en-
countered and also that the process should be usable on
games such as go with a very large branching factor.

Section 2 details the structure of the evolutionary algo-
rithm. Section 3 describes the experimental process to ex-
amine the behaviour of the new algorithm against a tradi-
tional minimax player. Section 4 presents the experimental
results and section 5 concludes.

2 On-Line Co-evolutionary Algorithm

2.1 Algorithm Structure

Figure 1 shows a representation of the co-evolutionary on-
line evolutionary algorithm structure.

The basic concept is to run the evolutionary algorithm
(EA) for a small number of generations before extracting
the best-performing chromosome, allowing a decision on
the next move to be made. The final population is used as
the new population for the next move to be generated, etc.
Thus a rolling population is used, evolving throughout the
game. Similar co-evolutionary on-line evolutionary algo-
rithms have been used successfully for other dynamic prob-
lems [6]. With the current chromosome representation, gene
1 corresponds to the next move to make. This is output and
the board state updated. The EA then waits until the oppo-
nent makes its move, and the board state is updated accord-
ingly. All chromosomes in both players are then cropped
to remove the first (now played) gene, and the remaining
chromosome segments are then used for a small number of
generations (with selection and mutation) to generate the
next move to play.

2.2 Chromosome Structure

The genetic representation is initialised as a sequence of 100
genes, one per move. Each gene is a real value in the range
[0,1). The gene is decoded into a move by multiplying the
real value by the total number of moves currently available,
rounding to the nearest integer and using this as an index for
a single move from the list of available moves. Although
this prototype representation is highly epistatic, with future
moves dependent on the current move choice (the number of
available moves at each node in the game-tree will vary sig-
nificantly), it serves to examine whether the co-evolutionary
approach can produce useful game-play.

After each move is made, the first gene is cropped from
all chromosomes, resulting in a chromosome structure that
shortens as the game progresses.

Figure 1: Structure of co-evolutionary on-line evolutionary
algorithm playing engine.



2.3 Objectives

The objective for optimisation is to choose chromosomes
that win in the shortest possible time, or lose in the most
moves possible in an attempt to force a draw.

A draw is scored as zero. A win after 99 moves scores
1, after 98 moves scores 2 etc. A loss after 99 moves scores
-1, after 98 moves scores -2, etc.

Each chromosome plays a small number of games,T ,
against sequences drawn at random from the opponent pop-
ulation, but arranged so every chromosome in both the
player and opponent population plays exactlyT games in
each generation. Each chromosome is given an average
score based on playing games against theT opponent se-
quences. The score is to be maximised by the optimisation
process. Every chromosome is re-evaluated every genera-
tion (i.e., the objective scores for unmodified chromosomes
are not copied between generations to reduce computational
time as the stochastic nature of the co-evolution produces
very noisy objective values).

2.4 Selection and Reproduction

For each player, from a population ofP , P new solutions
are created using a simple mutation-only evolutionary pro-
gramme, adding Gaussian distributed noise with zero mean
and a standard deviation of0.7(1− (g − 1)/G) whereG is
the total number of generations to be performed andg is the
current generation numberg ∈ [1, G] (both on a per-move
basis). The genes are then cropped if necessary to lie within
the bounds [0,1). The initial standard deviation of 0.7 has
been chosen through experimentation to give reasonable re-
sults, but is unlikely to be optimum.

The parents and child populations are concatenated and
the2P chromosomes are played against the opponent pop-
ulation (which undergoes a similar process) to calculate the
objective scores. The bestP solutions are then retained for
the next generation.

3 Playability Experiments

To test how effective the on-line EA approach is as a game-
playing engine, a number of experiments have been devised.
The key aspect of the experiments is to examine the gross
effects on the level of competence of play of each of the
EA parameters of population size, number of generations
per ply and the number of games averaged to calculate the
objective score.

The on-line EA approach was played against a simple
piece difference strategy, combined with a minimax search
algorithm to both 2 and 4-ply. The MTD(f ) [7] variant of
minimax was used but without iterative deepening. In the
piece difference, the kings were weighted as being equal to
1.3 men, as had evolved in other evaluation schemes [8].
A small random number was added to the final evalua-
tion score that lay in the range [-0.25,0.25] and equates to
plus/minus a quarter of a man. The small amount of ran-
domness helps to prevent the play getting stuck in cyclic
moves (such as one piece left in a corner). If a game reached

Table 1: First experimental Configuration
Ref. Pop. Gens. T Tot. games
aa 25 20 1 1000
ab 50 10 1 1000
ac 100 5 1 1000
ad 500 1 1 1000
ae 5 20 5 1000
af 10 10 5 1000
ag 20 5 5 1000
ah 100 1 5 1000
ai 10 5 10 1000
aj 10 1 50 1000
ba 10 20 5 2000
ca 20 20 10 8000
cb 200 20 1 8000

100 moves made by each player, a draw was recorded.
A total of 100 games each as black and white was played

in each experiment as a check to identify any underlying
bias in playability.

The experimental strategy was to play algorithms with
different combinations of the three parameters under inves-
tigation, but maintaining the same number of games played
per ply. Thus the tradeoffs between the different algorithm
configurations can be examined.

Table 1 details the first set of experiments performed.
The first column is a reference for each experiment and the
second column is the size of the working population used
to represent each player. The third column is the number of
generations performed at each move and the fourth column
is the number of opponents played to calculate an aggregate
objective value. The final column details the total number
of game evaluations per player move.

During the evaluation of the first set of experiments, it
was noticed that gene 1 in the chromosome that had the best
score did not always represent the most common move in
gene 1 of the entire population. It was decided to perform
a second set of experiments where the move to make was
the move that was most commonly selected from the first
gene of all the chromosomes in the population. If multiple
moves have the same frequency of occurrence in the pop-
ulation, the tie is broken by using the mean scores for the
chromosomes that will produce the specific moves. This al-
ternative move selection method has more in common with
a conventional Monte-Carlo system.

Table 2 details the second set of experiments performed.
The first column is a reference for each experiment and the
second column is the size of the working population used
to represent each player. The third column is the number of
generations performed at each move and the fourth column
is the number of opponents played to calculate an aggregate
objective value. The fifth column is the number of ply the
minimax opponent used. The final column details the total
number of game evaluations per player move.

The second set of experiments concentrated on playing
at higher ply, and also experimentdd1 is against a player
which makes moves at random to give a baseline indication



Table 2: Second experimental Configuration
Ref. Pop. Gens. T ply Tot. games
da 5 100 1 4 1000
db 10 50 1 4 1000
dc 20 25 1 4 1000

dd1 25 20 1 rand 1000
dd2 25 20 1 4 1000
dd3 25 20 1 6 1000
de 50 10 1 4 1000
df 100 5 1 4 1000
dg 500 1 1 4 1000
dh 5 20 5 4 1000
di 10 10 5 4 1000
dj 20 5 5 4 1000
dk 100 1 5 4 1000
dl 10 5 10 4 1000
dm 10 1 50 4 1000
ea 10 20 5 4 2000
fa 20 20 10 4 8000

fb1 80 50 1 6 8000
fb2 80 50 1 8 8000
fb3 80 50 1 10 8000
fc 100 40 1 6 8000

fd1 200 20 1 4 8000
fd2 200 20 1 6 8000

of performance against a random player. Experimentfb2
is the results of 50 games for each colour and at 8-ply the
minimax algorithm has a similar processing time averaging
at approximately 2.2 seconds per move. Experimentfb3 is
the result of 25 games as both black/white and at 10-ply, the
minimax algorithm is taking significantly longer on average
to make a move (average approximately over 5 seconds per
move, but with variations from 0.05 seconds to 22.4 seconds
observed).

4 Results

4.1 Performance

The results of the experiments for Win:Draw:Loss (refer-
enced to the EA approach) are as shown in table 3 for both
2-ply and 4-ply with the experimental configuration detailed
in table 1. The results in table 4 correspond to the experi-
mental configuration shown in table 2 and the OLEA uses
the modified move selection process.

Most of the results are from only 100 trials for each
colour and as such are subject to significant variation, how-
ever it is possible to infer general trends within the results
that will help to tune the playing performance in the future.

4.2 First experiment set - Basic move selection

Table 3 shows the results of the first set of experiments.
Comparing trialsaa, ab, ac, ad, it is noticeable that the
game-playing performance generally gets worse as the num-
ber of generations at each ply reduces, with the best perfor-
mance where the population size is approximately the same

Table 3: Experimental Results for basic OLEA player
2-Ply 4-Ply

EA play W D L W D L
aa B 29 34 37 5 15 80

W 36 19 45 4 9 87
ab B 22 27 51 1 7 92

W 19 19 62 5 6 89
ac B 15 19 66 1 3 96

W 19 11 70 1 0 99
ad B 9 5 86 0 1 99

W 11 4 85 1 0 99
ae B 31 35 34 2 9 89

W 28 31 41 2 7 91
af B 33 38 29 2 19 79

W 29 35 36 4 15 81
ag B 28 31 41 2 10 88

W 40 21 39 10 6 84
ah B 23 17 60 4 1 95

W 27 11 62 1 1 98
ai B 32 35 33 3 12 85

W 26 21 53 8 9 83
aj B 26 29 45 4 6 90

W 27 18 55 2 4 94

ba B 40 36 24 5 19 76
W 42 39 19 9 20 71

ca B 51 34 15 9 23 68
W 43 37 20 15 30 55

cb B 25 23 52 5 7 88
W 21 32 47 3 12 85



as the number of generations (experimentaa). Experiments
ca andcb also show the same trend.

Comparingaa andai, it is noticeable that the number
of games to form the aggregated objective value has little
effect on the playing performance of the algorithm. Config-
urationaf appears to be the most effective, suggesting that
aggregating a small number of games may be beneficial us-
ing the ‘select the best performer’ strategy for choosing the
next move to play on the board.

Trial ca showed best overall performance and is bal-
anced in population size and generations (20 each) and has a
reasonably small number of evaluations. But with 8 times as
many games played as experimentaf , shows playing per-
formance improves with increased processing.

Trial af shows performance that can be considered
equivalent to the 2-ply minimax player with approximately
the same number of wins and losses. Against the 4-ply
player, configurationaf struggles. Player configurationca
can be considered better than the 2-ply player, but not as
good as 4-ply. Processing wise, the evolutionary approach is
not quick, and is far slower than a 4-ply piece counting min-
imax player, although the code is not optimised and could
be accelerated considerably.

4.3 Second experiment set - Modified move selection

Table 4 shows the results of the second set of experi-
ments where the modified move selection process was ap-
plied. Comparing trialsdd2, de, df, dg and dh, di, dj, dk,
with both one and five games averaged, it is noticeable that
the game-playing performance generally gets worse as the
number of generations at each ply reduces, with the best
performance where the population size is approximately the
same as the number of generations (experimentdd2). Ex-
perimentsfb1 with respect tofc, andfc with respect to
fd2 also show the same trend.

Experimentsdi anddj are interesting as from the previ-
ous paragraph,di would have been expected to be better. It
is believed that with the low population size of only 10 in
di, it cannot represent all the possible move combinations
in some board configurations (especially when kings are in
play) and so is hampered. This feature of the algorithm was
also observed inae, af, ag.

Comparingdf anddk, it is noticeable that the number
of games to form the aggregated objective value (given a
fixed population size) has a large impact on the playing per-
formance of the algorithm. Configurationdd2 appears to
be the most effective (with 1000 games per move calcula-
tion), suggesting that playing only a single game but us-
ing more generations may be beneficial using the ‘select the
most common move’ strategy for choosing the next move to
play on the board.

Trial fb2 showed best overall performance on the 4-ply
scores and has a number of generations which is approxi-
mately two thirds of the population size (population 80, 50
generations), and only uses a single game trial to calculate
each objective value. Experimentsfb1, fb2, fb3, fb4, fb5
show that the game playing ability is strong, even against
10-ply minimax players.

Table 4: Experimental Results for modified OLEA player
EA play ply W D L

da B 4 4 16 80
W 3 21 76

db B 4 3 22 75
W 8 25 67

dc B 4 10 17 73
W 12 18 70

dd1 B Rand 100 0 0
W 100 0 0

dd2 B 4 12 34 54
W 14 18 68

dd3 B 6 1 2 97
W 4 2 94

de B 4 10 22 68
W 8 24 68

df B 4 0 25 75
W 5 18 77

dg B 4 1 6 93
W 0 6 94

dh B 4 2 16 82
W 3 18 79

di B 4 7 21 72
W 9 17 74

dj B 4 8 24 68
W 7 25 68

dk B 4 0 3 97
W 0 4 96

dl B 4 2 27 71
W 4 13 83

dm B 4 1 1 98
W 0 2 98

ea B 4 7 26 67
W 11 23 66

fa B 4 16 37 47
W 27 42 31

fb1 B 2 75 19 6
W 77 19 4

fb2 B 4 29 35 36
W 30 29 41

fb3 B 6 8 16 76
W 11 22 67

fb4 B 8 1 7 17
W 0 13 12

fb5 B 10 0 24 26
W 0 18 22

fc B 6 6 17 77
W 10 18 72

fd1 B 4 12 39 49
W 33 27 40

fd2 B 6 0 13 87
W 5 14 81



Trial fb2 shows performance that can be considered
equivalent to the 4-ply minimax player with approximately
the same number of wins and losses. Against the 6-ply
player (fb3), the configuration is not as strong, but still
scores wins. Against the 8-ply player (fb4), again the
OLEA has scored a win (results are from 25 games each
colour only), but the processing time of the OLEA and
the minimax algorithm are equivalent. Against the 10-ply
player (fb5, results are from 25 games each colour only)
the OLEA is drawing and losing in equal proportions, with
no wins scored. However, the OLEA takes a consistent 2.2
seconds per move, whereas at 10-ply, some moves were tak-
ing over 20 seconds to play. A small number of games were
played at 12-ply, and the OLEA both drew and lost. Unfor-
tunately, although the OLEA was taking just over 2 seconds
per move, some of the minimax moves were taking more
than 5 minutes each and a reasonable number of games have
yet to be gathered.

At low ply, the OLEA play is not as powerful as minimax
for a given processing load. However, the OLEA is still
capable of playing higher ply players and scoring draws.
It is hoped that in future work looking at games such as
chess and go with higher branching factors, the OLEA may
become more efficient when compared to the time taken for
deep minimax searches.

Overall, there also appears to be a slight bias towards
playing second as the white player. The exact reason for the
bias is unclear, but it may be related to the uneven distribu-
tion of opening moves being played by the minimax player.

4.4 Example Game

The following shows an example output, played to a win,
from experimentfb4 playing black against the 8-ply player.
The moves are as referenced by the board structure shown
in figure 2. The opening 4 moves appear to be a variant of
theDouble Corner.
1) 9-14 22-17
2) 11-15 25-22
3) 8-11 29-25
4) 4-8 23-18
5) 14-(18)-23 (forced capture)
27-(23)-18
6) 12-16 17-13
7) 8-12 26-23
8) 16-20 30-26
9) 20-(24)-27 (forced capture)
31-(27)-24 (forced capture)
10) 11-16 18-(15)-11 (forced capture)
11) 16-20 23-18
12) 20-(24)-27 32-(27)-23 (forced
capture)
13) 7-(11)-16 (forced capture) 28-24
14) 16-19 24-(19)-15
15) 10-(15)-19 (forced capture)
23-(19)-16 (forced capture)
16) 12-(16)-19 (forced capture) 22-17
17) 19-24 26-23
18) 24-27 23-19

17 18 19 20

29 30 31 32

9

5 6 7 8

432

10

13 14 15 16

11 12

21 22 23 24

25 26 27 28

1

Figure 2: Board Layout

19) 27-31 19-16
20) 31-26 25-22
21) 26-23 18-15
22) 23-19 15-11
23) 19-(16)-12 (forced capture) 11-8
24) 3-7 8-4
25) 7-10 22-18
26) 6-9 13-(9)-6 (forced capture)
27) 2-(6)-9 (forced capture) 17-13
28) 10-14 13-(9)-6 (forced capture)
29) 1-(6)-10 18-(14)-9 (forced capture)
30) 5-(9)-14 (forced capture) 4-8
31) 12-(8)-3 (forced capture) 21-17
(forced move)
32) 14-(17)-21 (forced capture)

4.5 First Move Analysis

The first move made by each player as black was also
recorded. The percentage that each of the strategies plays
has been analysed and a synopsis of the results are presented
in Table 5, as referenced by the board structure shown in fig-
ure 2. The first column shows the seven opening moves, the
second column shows the percentages each move was used
for the strategyaf , the third column shows the moves used
by strategyca. The fourth column shows the moves used by
the minimax player at 2-ply and the final column for mini-
max at 4-ply.

The results are interesting with the EA player for strategy
af playing little bias in the opening move, suggesting that
little information has been extracted from the game tree –
only a population of 10 for 10 generations was used with 5
games aggregated for the objective.

However, strategyca is demonstrating more biased play,
targeting 11-15, 11-16 and 12-16 more heavily. The 2-Ply



Table 5: Move percentages
Move EA(af) EA(ca) 2-Ply 4-Ply
11-15 9 15 9 6
9-14 16 8 13 10
11-16 13 22 17 23
10-15 14 6 11 7
10-14 14 13 25 27
12-16 19 23 12 4
9-13 15 13 13 23

player however did seem to favour 10-14 and 11-16 as open-
ing moves. When extended to 4-ply, the bias became more
extreme with 10-14, 11-16 and 9-13 being used heavily.
The minimax player only plays a range of moves because of
the quarter-man randomness that is added to the evaluation.
Without the random element, the piece count will generate
the same move every time.

5 Conclusions

This paper introduces a novel approach for computer game-
playing based on the on-line evolutionary algorithm. The
experiments have demonstrated a player equivalent to 4-
ply performance (against a minimax algorithm using piece
count), and that also exhibits play that is superior to the
equivalent minimax ply player, such as an extended play
horizon, as can be witnessed by the 4-ply equivalent player
still managing to win a game against 8-ply minimax.

Although the player described in this paper is a rather
crude proof-of-concept algorithm, future work is antici-
pated to include: speeding up the software to investigate
higher levels of play and comparison to deeper minimax
searches; better chromosome structures that have lower
epistasis, possibly with a more ‘spatial’ representation of
the moves, rather than a move index; techniques to incorpo-
rate the details of the opponents actual move, such as pro-
moting the chromosomes that predicted the move that was
actually made; seeding the initial populations with good
opening book strategies; improved EA structures that are
more tolerant of the noisy fitness function; and alternative
objectives – weight win more heavily than loss, or take the
minimum/maximum of the small number of games rather
than averaging in an attempt to generate cautious/aggressive
play.

Bibliography

[1] Claude E. Shannon. Programming a computer for
playing chess. Philisophical Magazine (Series 7),
41(314):256–275, March 1950.

[2] J. Schaeffer. One Jump Ahead: Challenging Human
Supremacy in Checkers. Springer, Berlin, 1996.

[3] David B. Fogel.Blondie24: Playing at the edge of AI.
Morgan Kaufmann, 2001.

[4] B. Abramson. Expected-outcome : a general model of
static evaluation. InIEEE transactions on PAMI, vol-
ume 12, pages 182–193, 1990.

[5] B. Bouzy and B. Helmstetter. Monte carlo go devel-
opments. In Ernst A. Heinz, H. Jaap van den Herik,
and Hiroyuki Iida, editors,10th Advances in Computer
Games, pages 159–174, Graz, 2003. Kluwer Academic
Publishers.

[6] E.J. Hughes and B.A.White. On-line evolutionary al-
gorithm guidance for multiple missiles against multiple
targets. In16th IFAC Symposium on Automatic Control
in Aerospace, St. Petersburg, Russia, 14-18 June 2004.

[7] Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie
de Bruin. Best-first fixed-depth minimax algorithms. In
Artificial Intelligence, volume 87, pages 255–293, No-
vember 1996.

[8] Kumar Chellapilla and David B. Fogel. Anaconda de-
feats hoyle 6-0: A case study competing an evolved
checkers program against commercially available soft-
ware. InProceedings of the 2000 Congress on Evolu-
tionary Computation, pages 857–863, IEEE Press, Pis-
cataway, NJ, 2000.


