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Abstract- Multi-objective evolutionary algorithms are
widely established and well developed for problems with
two or three objectives. However, it is known that
for many-objective optimisation, where there are typi-
cally more than three objectives, the algorithms apply-
ing Pareto optimality as a ranking metric may loose
their effectiveness [1].

This paper compares three different approaches to
generating Pareto surfaces on both multi and many ob-
jective problems. The first approach is using an estab-
lished Pareto ranking method (NSGA II), the second
combines multiple single objective optimisations in a sin-
gle run (MSOPS), and the third uses multiple runs of a
single objective optimiser.

The results demonstrate that much can be gained by
generating the entire Pareto set in a single run, when
compared to repeated single objective optimisations. It
is also clear that NSGA II loses its effectiveness as the
problem dimensionality increases – it is more effective to
use many single objective optimisations than a Pareto-
ranking based optimiser on many-objective problems.
Ultimately though, “many once or once many” is depen-
dent on algorithm choice, not problem scale.

1 Introduction

In many real engineering problems, more than two ob-
jectives need to be optimised simultaneously. It is be-
lieved [1] that all multiobjective optimisation algorithms
that use Pareto-ranking as a fundamental selection method
(such as in NSGA II) will not perform efficiently on many-
objective problems with four or more objectives. As the
number of objectives increase, more of the population be-
comes non-dominated and the selective pressure driving the
population towards the Pareto set falls rapidly. Eventually
all of the selective pressure arises from the operator that
spreads the solutions across the non-dominated surface.

The alternative is to use a method that does not rely on
Pareto ranking to sort the population. The simplest of these
non-Pareto methods is to use a conventional aggregation ap-
proach such as weighted min-max (section 2.4) and perform
many single objective optimisations, changing the weight
vector set a little each time to enable the entire Pareto sur-
face to be sampled.

A natural extension is to attempt to satisfy all the weight
vectors simultaneously in a single run of the optimiser. Mul-
tiple Single Objective Pareto Sampling (MSOPS) [2] is one
method that develops this concept into a practical algorithm.

The hypotheses to be tested in this paper are:

Hypothesis 1 Given a fixed numer of function evaluations,

an optimiser that produces an entire Pareto set in one
run is better than generating the Pareto set through
many single objective optimisations using an aggre-
gation function.

Hypothesis 2 Optimisers that use Pareto ranking based
methods to sort the population will be very effective
for small numbers of objectives, but not perform as
effectively for many objectives when compared to op-
timisers based on non-Pareto ranking methods.

The reasoning behind hypothesis 1 is that in the first few
generations of the optimisation process, one large popula-
tion is feeding the bulk of the future Pareto set, re-using
many of the early objective calculations. Whereas in an op-
timiser that is generating a single Pareto point at a time, the
effective population size per point is restricted. Although
often indicated that repeated single objective optimistions
are not as effective as a single multiple objective optimisa-
tion [3], no evidence has been found that extends to many-
objective problems where more than two objectives exist.

The second hypothesis will give independent experimen-
tal confirmation of Purshouse’s theoretical results [1] when
comparing NSGA II against MSOPS. The experiments will
also test the performance of NSGA II against performing
multiple runs of a single objective optimiser.

Section 2 details the three optimisation algorithms com-
pared in the paper. Section 3 details the design of the ex-
periments to test the two hypotheses. Section 4 presents the
results of the experiments and section 5 concludes.

2 Algorithms For Comparison

2.1 NSGA II

The Non-dominated Sorting Genetic Algorithm II
(NSGA II) [4] is proving to be a robust optimisation
algorithm for a wide range of multi-objective problems.
The NSGA II Pareto ranking algorithm is an elitist system
and maintains an external archive of the Pareto solutions.

Fundamentally, the non-dominated sorting used segre-
gates the population into ‘layers’ by first finding the non-
dominated solutions in the population, and labels these
points as the first front. These points are removed and the
non-dominated solutions in the remaining population are
then identified and removed. The process continues until
the entire population has been classified into layers.

The algorithm updates the current archive by identify-
ing all the non-dominated solutions in the union of the old
archive and current population. The layers are taken in turn
until the maximum size of the archive is reached (often the
population size). The last layer to be added is truncated if



necessary by employing a crowding distance operator and
selecting the solutions with the smallest crowding distance
for removal, leading to the most diverse set. The crowding
distance is the average of the distances in objective space
between the point under consideration and the nearest ob-
jective values above and below (calculated independently
for each objective axis).

New solutions are created by selecting parents from the
archive set. The classic NSGA II algorithm uses a tourna-
ment selection system based on crowding distance to break
ties. In this paper, the same offspring generation process
as detailed in section 2 is used to allow the fairest compari-
son to be drawn between the three different approaches for
developing a Pareto set.

For NSGA II, a population of 100 for 100 generations
was used with an archive size of 100. The configuration
leads to 10,000 objective calculations per run of the opti-
miser.

2.2 MSOPS

Multiple Single Objective Pareto Sampling (MSOPS) [2]
has been used as the second optimisation process to decide
which are ‘good’ points for the next generation. MSOPS
performs multiple single-objective aggregation-based opti-
misations in a single run. Each of the aggregated optimisa-
tions is directed by a vector of weights, or target vector. The
key advantage is that the algorithm does not rely on Pareto
ranking to provide selective pressure. As the target vectors
are decideda-priori, MSOPS provides an active probing of
the Pareto set, rather than passive discovery.

The operation of MSOPS is to generate a set ofT target
vectors, and evaluate the performance of every individual in
the population, of sizeP , for every target vector, based on a
conventional aggregation method. As aggregation methods
(eg. weighted min-max,ε-constraint, goal attainment etc.)
are very simple to process, the calculation of each of the
performance metrics is fast.

Thus each of theP members of the population has a set
of T scores that indicate how well the population member
satisfied the range of target conditions. The scores are held
in a score matrix,S, which has dimensionsP×T . Eachcol-
umnof the matrixS corresponds to one target vector (each
column containingP entries) and is ranked, with the best
performing population member on the corresponding target
vector being given a rank of 1, and the worst a rank ofP .
The rank values are stored in a matrixR. Eachrow of the
rank matrixR may now be sorted, with the ranks for each
population member placed in ascending order. TheR ma-
trix now holds in the first column the highest rank achieved
for each population member across the set of target vec-
tors. The second column will hold the second highest rank
achieved etc. Thus the matrixR may be used to rank the
population, with the most fit being the solution that achieved
the most scores which were ranked 1 etc.

The flexibility of the approach is such that the target vec-
tors can be arbitrary, either generated using some structure,
or generated at random within certain limits. As the ranking
method employed is based on the number of target vectors

that are satisfied the best, a solution at the edge of the objec-
tive space will often satisfy vectors that cannot be attained.
The focus of the optimisation is naturally drawn to interest-
ing regions of surface such as the boundary of the optimisa-
tion surface and discontinuities. As a consequence though,
the efficiency of the algorithm is reduced in relation to the
number of unobtainable target vectors.

In the trials, only weighted min-max (section 2.4) is
used, along with 50 target vectors spread uniformly across
the search space (2D / 4D / 6D). Each run used a population
of 100 for 100 generations with 50 target vectors, leading to
a total of 10,000 objective calculations to generate a Pareto
set.

2.3 Repeated Single Objective

In the Repeated Single Objective (RSO) approach, a con-
ventional single objective EA is used, based on the weighted
min-max (section 2.4) aggregation function and each weight
vector in turn, but with a correspondingly smaller popula-
tion size and number of generations.

Thus for the 50 weight vector set (the same vector
sets are used for MSOPS and RSO to make the results
more comparable), 50 separate optimisations are performed.
Each single optimisation-run used a population of 10 for 20
generations, one run for each of the 50 weight vectors, lead-
ing to a total of 10,000 objective calculations to generate a
Pareto set, thus all three methods use exactly the same num-
ber of objective calculations to create the Pareto surface.

2.4 Weighted Min-Max

The weighted min-max score ofk objectives is calculated

using (1),wherewi is the weight of the i
th

objective,Oi.

s =
k

max
i=1

(wiOi) (1)

Weighted min-max is able to generate points on both con-
vex and concave Pareto sets. If the optimisation process
converges to a solution that exactly ‘matches’ the weight
vector, thenw1O1 = w2O2 = . . ., allowing the conver-
gence of the solution with respect to the weights to be as-
sessed. The weight vector corresponds to a point on the
Pareto set in the true direction given by the vectorV =
[1/w1, 1/w2, . . .]. Thus the angle between the vectorsV
andO indicate whether the solution lies where it was ex-
pected or not. If the vectorV lies within a discontinu-
ity of the Pareto set, or is outside of the entire objective
space, then the angle between the two vectors will be sig-
nificant. By observing the distribution of the final angular
errors across the total weight set, the limits of the objec-
tive space and discontinuities within the Pareto set can be
identified. This active probing of regions of interest is only
available in RSO and MSOPS, compared to NSGA II where
the placement of Pareto points is stochastic.

2.5 Core Algorithm Structure

For the results presented in the paper, a method based on
Differential Evolution has been used to create the offspring



population for the next generation.
Differential Evolution [5] is an evolutionary technique

that uses reproduction that is related to the current spatial
distribution of the population. The algorithm generates new
chromosomes by adding the weighted difference between
two chromosomes to a third chromosome. At each genera-
tion, for each member of the parent population, a new chro-
mosome is generated. Elements of this new chromosome
are then crossed with the parent chromosome to generate
the child chromosome. The child chromosome is evaluated
using the objective function. The size and direction of the
difference between any pair of chromosomes is determined
by the overall spread of the current population. Thus the
DE algorithm self adapts to the fitness landscape, reducing
the size of the mutations automatically as the search con-
verges. In this way, no separate probability distribution has
to be used for mutation which makes the scheme completely
self-organising.

The trial chromosome~Pt may be described as in (2).

~Pt = F ( ~Pa − ~Pb) + ~Pc (2)

Where chromosomes~Pa, ~Pb & ~Pc are chosen from the pop-
ulation without replacement andF is a scaling factor.

The crossover process is controlled by a crossover para-
meterC. The crossover region begins at a randomly cho-
sen parameter in the chromosome and then a segment of
lengthL genes is copied from~Pt to the parent chromosome
to create the child chromosome. If the segment is longer
than the remaining length of the chromosome, the segment
is wrapped to the beginning of the chromosome. The length
L is chosen probabilistically and is given by (3).

P (L ≥ v) = (C)v−1, v > 0 (3)

In general, the scaling parameterF and the crossover
parameterC lie in the range[0.5, 1]. Small values of F mean
that the population spread reduces faster and this is more
likely to result in the algorithm converging quickly at a local
minima. In this paper values of 0.7 for both F and C have
been used.

Constraints have been applied using a simple priority
method. The constrained and unconstrained solutions are
separated and ranked separately, with the best performing
solutions in each set being given the rank of 1. The rank
value of the worst unconstrained result is then added to the
rank values of the population members that are constrained.
Thus solutions that violate constraints will always appear
worse than the unconstrained solutions. The ranking val-
ues are used only for the truncation of the population. The
new population is generated in all the three methods by us-
ing each individual in turn as a base vector, and then com-
bining with three other vectors chosen at random without
replacement. This is not the same approach used conven-
tionally in NSGA II, but allows the three ranking methods
to be compared equally. The genes are all real-valued and
the chromosomes are the same dimensionality as the num-
ber of objectives.

3 Experimental Design

3.1 Introduction

Three experiments have been performed on 2, 4 and 6 ob-
jective test problems. Each experiment follows the same
format, but for a different number of dimensions in the ob-
jective function and chromosome.

For each test problem, 100 independent trials are per-
formed where each optimiser produces a non-dominated set
for analysis. A compound Pareto set is then generated based
on all 300 non-dominated surfaces (3 algorithms, 100 Pareto
sets each). This Pareto set is used as a reference set for the
hypervolume comparisons.

For each of the 300 non-dominated surfaces, the hy-
pervolume is calculated to indicate performance. The
Wilcoxon rank test is then applied to the three pair-wise
combinations of the algorithms, leading to 200 hypervol-
ume results being used to generate each of the test statistics
from the rank test (100 from algorithm A, 100 from algo-
rithm B etc.).

The three methods only differ in the means of assess-
ing which solutions are better than others, with the re-
combination and all other parameters either fixed or directly
comparable. Thus the algorithms may not be optimally
tuned for solving the three test problems and although each
algorithm may be able to achieve better results with tuning
(such as selecting a more targeted weight vector set), the
comparisons made in this paper are fair.

3.2 Hypervolume Metric

Fundamentally, the hypervolume metric [6] assesses the to-
tal area that lies between a chosen reference point that acts
as a corner to a hypercube, and the Pareto surface which
intersects the hypercube.

For minimisation, the reference point is placed in such a
way as to be at least weakly dominated by every member of
the set to be investigated. Thus for these experiments, the
reference point is chosen as the maximum value observed in
any Pareto set reported from any of the three methods across
all 100 repeat trials (each test function will attract a different
reference point due to the changes in dimensionality). The
better the Pareto set, the larger the hypervolume indicator
will be.

The hypervolume metric intrinsically accounts for not
just the relative proximity to the true Pareto set, but also
the diversity of solutions obtained across the set, especially
at the edges. It is also desirable for the optimiser to produce
an even spread of solutions across the front. The evenness
of spread is not assessed by the hypervolume metric, but it is
known that NSGA II often achieves well spread results, and
the spread of MSOPS and RSO is determined entirely by the
choice of target vectors. Therefore just the single metric of
hypervolume will be used to assess algorithm performance.

3.3 Wilcoxon Rank Test

Each of the experiments will generate three sets of 100 trial
Pareto sets. The hypervolume metric is calculated for each



of the 300 trial Pareto sets, and the hypervolume results can
be then compared using a non-parametric statistical mea-
sure.

The Wilcoxon rank test (also referred to as Mann-
Whitney test) is a non-parametric comparison, and as we
do not know what the likely distribution of results will be,
is appropriate. The test operates by creating a sorted list
of the total 200 hypervolume metric results from the two
methods that are being compared currently. The individual
rank values achieved by the metric results of each of the
two methods are summed and the difference between the
rank sums observed and related to a test statisticZ.

If one population of results is consistently higher (there-
fore better), that population will have more solutions in the
top of the ranking and will therefore achieve a lower rank
sum total. If the populations of results are drawn from the
same distribution, the rank sums will be more equal.

Assuming the null hypothesis that the distribution of the
hypervolume metric results are the same for two different
methods, we can reject the null hypothesis at a significance
level ofα = 0.05.

TheZ statistic is compared against the standard normal
distribution probability density function in order to derive
significance probability. A level ofα = 0.05 corresponds
to aZ value of 2.81 for a two-tailed test. If the magnitude of
theZ value is greater than 2.81, the null hypothesis that the
distributions of the hypervolume results are the same can be
rejected. The sign of theZ value indicates which of the sets
of data are superior.

3.4 Two Objective Problem

To test the behaviour of the three optimisers in two dimen-
sions, a concave and discontinuous Pareto surface has been
used [7]. The gene values all lie in the range [0,1] and the
objectives are to be minimised.

F1 :
O1 = x

O2 = y

0 ≥ −(x)2 −(y)2 + 1 + 0.1 cos
(
16 arctan

(
x

y

))

0.5 ≥ (x− 0.5)2 + (y − 0.5)2

0 ≤ x, y ≤ 1 (4)

The function has been scaled so the decision space lies
within the range0 ≤ x, y ≤ 1.

3.5 Four and Six Objective Problems

For the four and six objective problems, a continuous con-
cave Pareto set was used that has a low density of solutions
at the Pareto front. The gene values all lie in the range [0,1]
and the objectives are to be minimised.

F2&F3 :

Table 1: Table of statistical results from the Wilcoxon rank
test for 2 objectives

Comparison Z Summary
MSOPS vs. RSO 12.22 MSOPS> RSO
RSO vs. NSGA II -12.22 RSO< NSGA II
MSOPS vs. NSGA II -8.04 MSOPS< NSGA II

Oi = 1− x2
i

0.5 <

N∑

i=1

Oi.
2 (5)

In equation 5, anyN objectives can be accounted for.

4 Results

4.1 Two Objective Problem

Figure 1 shows a plot of the sorted hypervolume metric re-
sults from the first experiment. The results show clearly that
NSGA II outperforms MSOPS which outperforms RSO.
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Figure 1: Comparison of sorted hypervolume results for 2
objectives, MSOPS (solid), RSO (dashed) and NSGA II
(dot-dash), relative to the hypervolume of the combined
Pareto set (larger values better). The results show clearly
that NSGA II outperforms MSOPS which outperforms RSO

Table 1 shows theZ test statistic from the Wilcoxon
rank test. The tests were performed based on the order in
column 1 of the table. For example, the first results show
MSOPS vs. RSO and have a positiveZ value greater than
2.81, demonstrating that the null hypothesis can be rejected
and that MSOPS performs better than RSO. This result is
summarised in column 3.

The statistical analysis rejects the null hypothesis in all
cases. Although the differences in performance appear
large, as figures 2 and 3 show, the difference observable in
the Pareto sets is not so distinct, demonstrating the require-
ment of quantative rather than subjective comparison.
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Figure 2: Plot of worst objective fronts for each of the opti-
misation methods. NSGA II is ‘.’, MSOPS is ‘4’ and RSO
is ‘◦’

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Objective 1

O
bj

ec
tiv

e 
2

Plot of worst Pareto set from 100 trials

Figure 3: Plot of best objective fronts for each of the opti-
misation methods. NSGA II is ‘.’, MSOPS is ‘4’ and RSO
is ‘◦’

Table 2: Table of statistical results from the Wilcoxon rank
test for 4 objectives

Comparison Z Summary
MSOPS vs. RSO 12.22 MSOPS> RSO
RSO vs. NSGA II 9.97 RSO> NSGA II
MSOPS vs. NSGA II 12.22 MSOPS> NSGA II

Table 3: Table of statistical results from the Wilcoxon rank
test for 6 objectives

Comparison Z Summary
MSOPS vs. RSO 12.20 MSOPS> RSO
RSO vs. NSGA II 12.22 RSO> NSGA II
MSOPS vs. NSGA II 12.22 MSOPS> NSGA II

4.2 Four Objective Problem

Figure 4 shows a plot of the sorted hypervolume met-
ric results from the second experiment. The results show
clearly that MSOPS outperforms RSO which outperforms
NSGA II.

0 10 20 30 40 50 60 70 80 90 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98
S metric value relative to S value of Pareto set, 4 objectives

relative trial

re
la

tiv
e 

S
 m

et
ric

 v
al

ue

Figure 4: Comparison of sorted hypervolume results for 4
objectives, MSOPS (solid), RSO (dashed) and NSGA II
(dot-dash), relative to the hypervolume of the combined
Pareto set (larger values better). The results show clearly
that MSOPS outperforms RSO which outperforms NSGA II

Table 2 shows theZ test statistic from the Wilcoxon rank
test. The statistical analysis rejects the null hypothesis in all
cases.

4.3 Six Objective Problem

Figure 5 shows a plot of the sorted hypervolume met-
ric results from the third experiment. The results show
clearly that MSOPS outperforms RSO which outperforms
NSGA II.

Table 3 shows theZ test statistic from the Wilcoxon rank
test. The statistical analysis rejects the null hypothesis in all
cases.
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Figure 5: Comparison of sorted hypervolume results for 6
objectives, MSOPS (solid), RSO (dashed) and NSGA II
(dot-dash), relative to the hypervolume of the combined
Pareto set (larger values better). The results show clearly
that MSOPS outperforms RSO which outperforms NSGA II

4.4 Discussion

It is clear from the results in the tables where the repeated
single objective optimisation and MSOPS are superior to
NSGA-II that Purshouse’s [1] analysis was correct and that
all methods that rely on Pareto ranking are only suitable for
multi-objective problems and not many-objective problems.
The experiments also demonstrate conclusively that running
many single objective optimisations is superior to Pareto
ranking based methods when many-objective problems are
being considered, i.e. NSGA II is only better than MSOPS
and RSO for two objectives, otherwise the non-Pareto rank-
ing methods are better. Hypothesis 2 is demonstrated with
statistical significance on the objective functions used in this
paper.

The experiments have also demonstrated that running
many single objective optimisations in one run is superior to
running individual single objective optimisations over many
runs, i.e. MSOPS is consistently better than RSO. Thus hy-
pothesis 1 is demonstrated for the objectives used in this
paper.

5 Conclusions

The experiments have shown with a very high statistical sig-
nificance that the two hypothses can be both accepted:

Hypothesis 1 Given a fixed numer of function evaluations,
an optimiser that produces an entire Pareto set in one
run is better than generating the Pareto set through
many single objective optimisations using an aggre-
gation function.

Hypothesis 2 Optimisers that use Pareto ranking based
methods to sort the population will be very effec-
tive for small numbers of objectives, but not perform

as effectively for many-objectives when compared to
optimisers based on non-Pareto ranking methods.

Although only a limited range of test functions have been
presented, as hypothesis 1 has been shown to be true in these
situations, under the hypervolume metric, the hypothesis is
likely to be true in many others functions and metrics. Still
the results demonstrate that much can be gained by generat-
ing the entire Pareto set in a single run, when compared to
repeated single objective optimisations. It is also clear that
NSGA II loses its effectiveness as the problem dimension-
ality increases – it is more effective to use many single ob-
jective optimisations than a Pareto-ranking based optimiser
on many-objective problems. Ultimately though, “many
once or once many” is dependent on algorithm choice not
problem scale as the performance of MSOPS vs. RSO and
NSGA II vs. RSO have shown.
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