
Assessing Robustness of Optimisation Performance for Problems

With Expensive Evaluation Functions

Evan J. Hughes, Member, IEEE

Abstract— In complex engineering problems, the objective
functions can be very slow to evaluate, restricting the optimisa-
tion process to only a few hundred objective calculations. Often
the optimisation process can only be performed once, requiring
a good solution from the single run. Thus we need a robust
approach to algorithm development and tuning.

This paper introduces a new metric for quantifying the
performance of different algorithms on different test functions
relative to the range of performance expected from a random
search. As a random search is a repeatable benchmark for any
objective function, the metric can be applied as an absolute,
rather than relative metric. The metric allows the best, worst
and median performance of different algorithms to be compared
directly, even for optimisation runs with only tens of evaluations.

Additionally a new optimisation algorithm, based on a
Voronoi decomposition of the decision space, is presented that
provides reliable optimisation performance, but with a very
limited number of function evaluations. The paper evaluates
the performance of the new algorithm with the new metric on
a range of surfaces and against a typical evolutionary approach.

I. INTRODUCTION

Evolutionary Algorithms [1] are becoming a well es-

tablished technique for solving hard engineering problems.

Objective functions are becoming more complex and con-

sequently can take a long time to evaluate. Problems such

as aerodynamic optimisation and electromagnetic simulation

often rely on finite element methods in order to simulate the

systems of interest. These simulations can take from seconds

to hours to run. The better the resolution and fidelity required,

the longer the simulation time.

Many excellent algorithms have been developed (see [2]

for an excellent survey) that tackle the problems associated

with optimising expensive objective functions, but often they

rely on generating a smooth local model of the anticipated

fitness landscape in order to guide the selection of the

next point to evaluate. With rough fitness landscapes (for

example, problems which approximate a fractal surface, or

surfaces which have very deep but narrow optima), a smooth

approximation can be misleading.

Many publications in the area of expensive fitness evalua-

tion are concerned with the direct comparison of a range of

algorithms with each other. The trials are often suitable for

assessing which algorithm is better on the chosen problems,

but they do not indicate whether any of the algorithms are

actually performing well.

Evan J. Hughes is with the Department of Aerospace, Power and Sensors,
Cranfield University, DCMT, Shrivenham, Swindon, Wiltshire, England.
SN6 8LA. (phone: +44 (0)1793 785255; fax: +44 (0)1793 785902; email:
e.j.hughes@cranfield.ac.uk).

When the optimisation algorithms are applied to the real

problem of interest, we need to be sure that even a bad run

(given the stochastic nature of the EA) is likely to produce

a useful result. Thus we require test functions that have

similar characteristics to the problem of interest, allowing

algorithms to be developed and tuned without the expensive

optimisations; and also assessment metrics that alow us to

quantify how bad the optimiser may be, as well as the typical

performance.

This paper details a new metric, Equivalent Random

Search (ERS), that quantifies the performance of an algorithm

on an objective function relative to the expected performance

of a random search. The metric is calculated through a non-

parametric statistical analysis of the best solutions found by

the optimiser over an ensemble of trials. The performance of

the optimiser is normalised using the cumulative probability

density function of the objective surface, ensuring the metric

is accurate for all functions, whether single peak or highly

multi-modal.

This paper also proposes a new algorithm that is designed

specifically to provide reliable and controllable exploration

and exploitation of rough landscapes, but with few objective

calculations. The algorithm is ‘steady-state’ rather than gen-

erational (it creates one search point at a time) and utilises

all the objective calculations made when deciding where to

place the next point in the hypercube that defines the search

space. An ‘ideal’ base heuristic used to control the degree of

global and local exploration.

Section II describes the ERS metric. Section III describes

the ‘ideal’ heuristic for a global and local search algorithm

and section IV describes the full Voronoi Optima Expansion

algorithm. Section V describes three example test functions,

section VI presents results of the optimisation trials and

a comparison with a typical evolutionary approach, and

section VII concludes.

II. THE EQUIVALENT RANDOM SEARCH METRIC

The Equivalent Random Search (ERS) Metric assesses

the performance of an algorithm, relative to the expected

performance of a random search on the same objective

function. The metric gives a direct indication of how many

points would be needed in a random search to achieve the

same solution quality. The metric can then be compared to

the actual number of objective evaluations used by the opti-

miser in order to assess the effectiveness of the optimisation

algorithm. For example, if 1000 objective calculations were

used by the optimisation process, but the ERS metric reported

that 10,000 points would be needed by a random search to

achieve equivalent results, then the algorithm is performing

well. A similar metric based on comparisons to a uniform

gridded search has been developed independently as part of

the Huygens benchmarking suite [3]. Unfortunately a gridded

search is dependent on the topology of the optima, and the

interaction with the grid structure is highly complex and

problem specific, preventing a simple generalised approach

with a robust mathematical basis.

A. Objective Normalisation

To get a reliable assessment, the optimisation process is

repeated M times and the best optima results, Yi : i =
1 . . . M , gathered. Each of the M results are transformed

via the cumulative probability density function (CDF) of

the objective surface, D(Y), to generate the probability

of obtaining an objective value better than the best value

observed in each of the M runs. This normalisation process

allows even very rough, multi-modal and deceptive functions

to be used for evaluating the optimisers.

The function D(Y) can be generated for any objective

function by performing a large uniform-random sample of

the objective surface. The number of sample points, K, is

typically a few orders of magnitude larger than the number

of points generated by the optimisation algorithm. A modest

number of samples may be used initially, and then extended if

the calculation of the metric indicates insufficient resolution

of D(Y).
The set of K objective values from the random sampling

process are sorted with the best solution labelled with a rank

of 1, and the worst a rank of N , giving a sorted set R.

The function D(Y) is then generated by finding the index

number of the first member of set R which is worse than

the optimised objective value Y . This index value is divided

by K to provide an estimate of the probability of any single

random evaluation yielding an objective value result that is

less than Y . If a value of Y leads to an index value of 1
being identified as the first value of the set R that is larger,

then the number of points, K, in R is too small and a larger

sample set is required to prevent ‘clipping’ of the metric.

Thus for test functions where the evaluation is expensive,

the approximation of D(Y) can be improved progressively

until satisfactory resolution is obtained.

It is also possible (but not always trivial) to obtain an

analytic solution for the CDF if the equations for the objec-

tive function are known. This allows the ERS metric to be

calculated quickly, but more importantly, will allow functions

that have a very low density of points at the Pareto surface

to be analysed without resorting to massive Monte-Carlo

searches.

B. Metric Calculation

Once we have calculated D(Y), the probability of there

existing a solution better than Y , we can compare the result

directly to a random search. For the random search, if we

generated a single random point, there would be a probability

D(Y) that the point would be better than the optima at Y ,

and a probability 1−D(Y) that the point will be worse than

Y . If we generate N independent random points, then we

will not find a better solution than Y with a probability of

(1 − D(Y))N . Therefore the probability of finding at least

one solution better than Y with an N point random search

is given by:

D′(Y) = 1 − (1 − D(Y))N (1)

For example, if D(Y) = 1/1000 and we generated N =
100 random points, the probability of at least one of the N
solutions being better than Y is D′(Y) =9.5%.

Importantly, the new cumulative density function, D′(Y)
in equation 1, describes the probability that a random search

of N points would find an optimum value better than the

value Y . Therefore if we repeated an N -point random search

M times, D′(Y) would describe the distribution of the M
results. Thus the median value of Y from our M searches

would be an approximation of the value of Y necessary to

make D′(Y) = 0.5. We can exploit this property of D′(Y)
to create a metric that uses a simple random search as its

reference. As the reference can be described analytically,

we can use the metric to quantify the performance of any

optimisation algorithm on any evaluation function.

The ERS metric is calculated by performing M indepen-

dent runs of our optimisation algorithm under test, and then

exploiting (1) to calculate a value for N , given the observed

values for Y from our optimiser. By setting D′(Ymedian) =
0.5, where Ymedian is chosen to be the median result from

our M trials of the optimiser, we can calculate the value for

N to give us an equivalent size of random search that we

would have to perform to achieve the same median result.

Therefore we can re-arrange (1) (and taking logarithms)

to give:

Nmedian =
log(0.5)

log(1 − D(Ymedian))
(2)

Ultimately, the calculated value for Nmedian is only an

estimate and is subject to sampling error (median is cal-

culated by ranking the M values for Y and finding the

central value). If we consider that the probability of the true

value of Nmedian being less than the estimate is 0.5, and

the probability of the true value being greater is also 0.5,

we can describe the error in the estimate of the equivalent

random search performance using a binomial distribution of

the rank locations with the two probabilities being p = 0.5
and q = 1−0.5. A binomial distribution can be approximated

by a normal distribution when Mp ≥ 5 and Mq ≥ 5. Thus a

minimum value of M = 10 trials will suffice. The variance is

given by Mpq = M/4 and therefore the standard deviation

by σ =
√

M/2. The 95% confidence limits of a normal

distribution are given by ±1.96σ. Therefore the the upper

and lower bounds to give 95% confidence intervals on the

estimate of the median correspond to the values of Y from

the ranked data in indexes (M + 1)/2 ± 1.96
√

M/2. Thus

given the equivalent random search size from the median

value, the confidence limits indicate the range of actual

random search sizes that could potentially yield equivalent

results to our optimiser.

We can also process other statistics such as the best and

worst values of Y and associate them to the best and worst

values expected from a random search.

For the random search, the probability given by D′(Y)M

is the probability that M searches will all return values better

than Y . Therefore the cumulative probability distribution in

(3) is the distribution of probabilities that at least one worse

value than Y will be found in M trials. The distribution

D′′(Y) is therefore the distribution of the worst optimisation

results from M trials.

D′′(Y) = 1 − D′(Y)M (3)

Equation 4 shows (3) and (1) re-arranged to obtain a me-

dian estimate and the 95% confidence limits of the worst

optimisation value.

Nworstupper
=

log(1 − M
√

0.025)

log(1 − D(Yworst))

Nworstmedian
=

log(1 − M
√

0.5)

log(1 − D(Yworst))

Nworstlower
=

log(1 − M
√

0.975)

log(1 − D(Yworst))
(4)

A similar process may be used to establish the estimate of

the equivalent random search based on the best results and

is given in (5)

Nbestupper
=

log(0.025)

M log(1 − D(Ybest))

Nbestmedian
=

log(0.5)

M log(1 − D(Ybest))

Nbestlower
=

log(0.975)

M log(1 − D(Ybest))
(5)

It must be noted that care should be exercised if other

statistics are to be used as some are not function independent

and may be biased (for example the mean will only be

unbiased for unimodal functions).

The metric Nmedian in (2) is the size of the random search

optimisation that must be performed, that when repeated M
times, will obtain a median optima Ymedian. This metric is

an indicator of typical algorithm performance (distance to the

true global objective value) and a value of Nmedian larger

than the actual number of function evaluations used indicates

an optimisation algorithm well suited to the test function.

The metric Nworst in (4) is the size of the random search

optimisation that must be performed, that when repeated

M times, will obtain a worst optima of Yworst. If this

metric is larger than Nmedian, then the spread of the inferior

solutions from the optimisation process (i.e. variance of

inferior solutions) is smaller than the spread that would be

obtained by a random search process. This is a desirable

feature of optimisation algorithms as it suggests that if only

a single run of the optimiser can be performed, there is

confidence that a good solution will be identified. If Nworst

is smaller than Nmedian, the optimiser is prone to premature

convergence on poor solutions (highly undesirable).

The metric Nbest in (5) is the size of the random search

optimisation that must be performed, that when repeated M
times, will obtain a best optima of Ybest. If this metric is

larger than Nmedian, the optimisation algorithm is capable

of identifying exceptionally good solutions occasionally. If

Nbest is less than Nmedian, the optimisation algorithm rarely

finds exceptional solutions. In practice, as long as Nbest

is at least equivalent to the number of evaluations actually

performed (i.e the extreme best solution found in M opti-

misation runs is of similar performance to the extreme best

solution found in M random searches of the same number

of function evaluations), the algorithm is quite satisfactory,

but generally the confidence intervals of Nbest are very large

and it can only be used for indication purposes.

Any situations that give Nmedian lower than the actual

number of evaluations used indicate that a random search

would have most likely provided better results than from the

optimiser.

III. THE ‘IDEAL’ SEARCH HEURISTIC

The idealised heuristic forms the basis of the optimisation

algorithm and is:

1) Exploration: Next point is the centre of the largest

empty convex region.

2) Exploitation: Next point is the centre of the largest

empty convex region that has a selected good point at

one vertex.

The aim of the idealised heuristic is to reduce the size

of unexplored regions, resulting in uniform search coverage,

while still being able to focus on the areas where the local

and global optima lie. With only a limited number of function

evaluations available, every evaluation must count.

A similar concept based on Voronoi decomposition has

been applied to multi-objective optimisation problems [4],

and more recently a modified Genetic Algorithm that iden-

tifies large hyper-rectangles has been proposed [5].

A. Exploration

The exploration search step of the heuristic identifies the

most unexplored region of the search hypercube, and places

the next point at the centre of the region. The region could

be described in a number of ways, the ideal being to find the

largest convex region that will reside between the existing

evaluation points.

Section III-E describes the Voronoi method for approxi-

mating the most unexplored region.

B. Exploitation

The exploitation step involves first identifying a good

point. The method used in this paper is to first triangulate

the decision surface, and then identify all solutions which

are superior to all their neighbours: i.e. all local minima.

The triangulation process can be achieved easily through

Delaunay triangulation [6]

Once a point has been selected, the largest unexplored

volume that contains the point at its edge is identified, and a

new evaluation generated for the point corresponding to the

centre of the volume.

C. Exploration versus Exploitation

The two phases of the algorithm, exploration and ex-

ploitation, must be controlled in order to provide effective

coverage of the decision space. The algorithms must begin

with an exploration phase to allow interesting regions to be

identified, then the exploitation phase can be applied to refine

the regions.

In evolutionary algorithms, the initial population provides

pure exploration. The crossover operator also provides initial

exploration, but the effect reduces as the algorithm converges.

The selective pressure and crossover in subsequent genera-

tions provide exploitation, with a low level mutation provid-

ing continuing exploration of the decision space throughout

the remaining optimisation process.

D. Largest Empty Convex Region

The idealised algorithm in section III relies on being able

to identify the largest empty convex region either in the

entire search space, or with a chosen point at its edge. The

region may be approximated by finding the largest empty

hypersphere that can be placed between the existing points.

The new point would then be generated at the centre of

the hypersphere. Finding the centre of the largest empty

hypersphere is still not a trivial problem to solve.

E. Voronoi Diagrams

The Voronoi diagram [6], [7] can be used to identify the

centre of the largest empty hypersphere. A typical Voronoi

Diagram is shown in Fig. 1 with the largest empty circle

indicated. The centre of the largest empty circle will always

coincide with either a Voronoi vertex, or a vertex generated

by the intersection of the Voronoi diagram with the convex

hull of the set of points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Fig. 1. Example 2D Voronoi diagram showing how centre of largest empty
hypersphere lies at a Voronoi vertex

The Voronoi diagram divides a hyperspace containing

points into regions, each region surrounding a single point.

The space is divided so each point is associated with the

region of space closest to it. If P = p1, p2, . . . , pn is a set of

points (or sites) in the hypervolume, the volume is partitioned

by assigning every point in the volume to its nearest site. All

those points assigned to pi form the Voronoi region V (pi).

V (pi) = {x : |pi − x| ≤ |pj − x|,∀j 6= i} (6)

The Voronoi diagram is formed as the boundaries of the

set of Voronoi regions. The Voronoi edges are points on

the hyperplane that lie on the boundaries of the Voronoi

regions and will be by definition equidistant from two sites. A

Voronoi vertex is formed at the junction of multiple Voronoi

hyperplanes. If the point at the centre of each Voronoi cell is

joined by lines to the points at the centre of its neighbouring

cells, the Delaunay triangulation results and can be used

to identify the set of nearest neighbours to a point. The

generation of Voronoi diagrams is computationally expen-

sive and so direct use is only really possible for problems

with low-dimensionality. Indirect calculation of the Voronoi

diagram is still slow but can lead to useful optimisation

systems [8]. It is possible to calculate the Voronoi diagram

and Delaunay triangulation simultaneously and using an

incremental approach [9], one point at a time, which is ideal

for the algorithm described in this paper.

To simplify the processing for finding the largest empty

hypersphere, a point is placed at each corner of the hypercube

in the decision space, simplifying the calculation of the

intersection of the Voronoi diagram with the convex hull

of the points. The next point is then placed uniformly at

random within the hypercube, allowing the Voronoi diagram

to be generated and the optimisation process to begin. Thus

only one point is placed at random, the structure of the

remaining points is deterministic, but biased by the single

random selection.

With a 10 dimensional problem, the hypercube has 1024

corners, therefore 1025 points would be required in the

initial sampling of the decision space. For many engineering

problems that are to be optimised on a single processor, the

direct Voronoi approach is limited to problems with less than

10 dimensions due to a rapid expansion of computational

complexity with increasing dimensionality. Unfortunately

Voronoi decomposition is computationally expensive for even

moderate numbers of variables, but the processing is small

compared to the cost of evaluating the objective function

IV. VORONOI OPTIMA EXPANSION

The Voronoi Optima Expansion (VOE) algorithm operates

by first performing a global search phase for a fixed fraction

of the available objective evaluations, and then performing a

repeated local expansion of the best performing local minima

in the Delaunay triangulation. Figure 2 shows a typical

triangulation net after a run of the VOE algorithm with 10%

global search.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Voronoi Diagram and Delaunay Triangulation of 100pt, VOE, Test fcn. 3

x

y

Fig. 2. Example Voronoi Diagram (blue) and Delaunay triangulation (red)
of a VOE run on test function 3

At each local expansion iteration, L local optima are

investigated with a local search step:

L = max

(

1,min

(

NL,
(Imax − I)

S

))

Where NL is the actual number of local optima currently

identifiable in the triangulation, I is the number of evalu-

ations performed so far, Imax is the maximum number of

evaluations to be performed, and S is a compression factor

that limits the proportion of the available evaluations that

may be used for this local search phase.

Each local optima is expanded in turn (starting with the

worst performing). When more local optima are present than

the expansion limit L, the best L are chosen for expansion.

In practice, there will be a maximum of I/2D local optima

at any one time, where D is the number of dimensions of the

decision space and I is the number of evaluations performed

so far. Initially, the number of local optima is often less

than the maximum number of expansions allowed and all the

optima get probed. As the remaining number of evaluations

reduces, only the better optima get expanded, until in the final

phase of the algorithm (approximately the last S evaluations)

only the best solution is being expanded, effectively a local

hill-climb.

The VOE algorithm is interesting in that most improve-

ments in the objective values occur towards the end of the op-

timisation run when the algorithm is focussing aggressively

on a very small number of optima, unlike many evolutionary

approaches which provide very reasonable local solutions

within the first few generations.

V. OBJECTIVE FUNCTIONS

Three objective functions have been used to examine

the performance of the VOE optimisation process and the

behaviour of the ERS metric.

A. Basic Test Functions

Two test functions were formulated as maximisation prob-

lems. Both having an optimum of 1.0. The first has a

single optima, and the second many local optima. Both

were formulated for a chromosome using two real-valued

genes. Test function 1 (spike), described by equation 7 has

a single narrow central spike as the global optimum point.

Test function 2 (rings), described by equation 9 has a narrow

central spike as the global optimum point and then a series

of concentric ridges. The function is highly deceptive and it

is very difficult for optimisation algorithms to identify the

central optima.

1) Test function 1 - ‘spike’: Function 7 is simple and

is used to form a ‘lower’ bound of complexity for the

demonstration of the metric. The function has a very sharp

‘spike’ in the centre that requires a very large random search

to identify accurately. Equation 8 is the analytic CDF for

the spike function up to a probability of approximately 80%

which is ample for even very small random searches.

Y = 1 − 4

√

x2 + y2, −10 ≤ x, y ≤ 10 (7)

D(Y) =
π(1 − Y)4

400
, 0 ≤

√

x2 + y2 ≤ 10 (8)

2) Test function 2 - ‘rings’: Equation 9 shows a 2 dimen-

sional multi-modal test function that has a central spike to

be maximised, and 3 local optima surrounding it as ’rings’,

rather than discrete points. This objective function appears

simple but can cause significant problems to optimisers due

to the local objectives being plateaus widely distributed in

decision space and forming very significant attractors in the

objective domain. The central spike is in practice difficult

to identify compared to the relative ease of identifying the

local optima. Equation 10 shows the analytic Cumulative

Probability Density Function (valid for greater than 95% of

solutions).

Y =
3

∑

r=0

0.998r exp

[−(d − 4πr/5)2

0.32(r + 1)

]

d =

√

√

√

√

2
∑

i=1

x2

i , −10 ≤ xi ≤ 10 (9)

D(Y) =
π

(202)

[

(

−0.32 ln(Y)
)

+

3
∑

r=1

[

(q ≤ 0.998r)

[

(

4rπ

5
+ q

)2

−
(

4rπ

5
− q

)2
]]]

q =

√

−0.32(r + 1) ln

(

Y

0.998r

)

(10)

B. Fractal Surface Test Function

The third test function is a very rough fractal landscape

formulated as a minimisation problem and is function 20 103

of the Huygens benchmarking suite [3] and is shown in

figure 3. The global optima is unknown but the best found so

Fig. 3. Test objective surface of Huygens benchmark moon 20 103

far is −2.6114 at [0.1006 0.4089]. The function is formulated

for a chromosome using two real valued genes, each lying in

the range [0, 1]. Figure 4 shows the Cumulative Probability

Density Function of the function.

−2.5 −2 −1.5 −1 −0.5 0

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
CDF for test function 3

Objective Value, Y

L
o

g
1

0
(P

ro
b

a
b

ili
ty

 o
f

fi
n

d
in

g
 b

e
tt

e
r

s
o

lu
ti
o

n
 t

h
a

n
 Y

)

Fig. 4. Cumulative Probability Density Function of Huygens function
20 103 (based on 35, 000 evaluations)

VI. RESULTS

The Voronoi Optima Expansion algorithm was applied to

each of the three test functions, and as a comparison, Dif-

ferential Evolution (DE) [10] (with rank selection) was also

applied with the same limit on objective function evaluations

in each case.

For each test function, the effect of global vs. local

exploration was investigated by repeating the trials but with

differing proportions of global and local search. For the VOE

algorithm, linear steps were created. For DE the population

size and number of generations were varied in order to

achieve a similar contrast between local and global search.

In DE linear steps were not possible. For both algorithms

the case of total global search was evaluated (e.g. for DE a

population of 100, 1 generation).

For each experiment to calculate the ERS metrics, 20 trials

were performed for test functions 1 & 2, and 10 trials were

performed for test function 3. The VOE algorithm is tuned by

two parameters: The proportion of solutions used for global

search, and the compression factor for the local search. A

compression factor of S = 16 appears to be useful and has

been applied in all the trials, with the ratio of global:local

search being varied parametrically. The DE algorithm is

tuned by the population size and number of generations,

the search scaling factor F , and the crossover rate C. The

population size and number of generations are varied in each

experiment, and the values F = 0.7 and C = 0.5 were

found to be a very good choice (there was little change in the

algorithm performance with variation in the two parameters).

A. Test function 1 - ‘spike’

As the function is so simple,100 objective evaluations for

each trial proved more than adequate for both optimisers to

identify good solutions. Figure 5 shows the ERS metrics for

the VOE algorithm and figure 6 shows the ERS metrics for

the DE algorithm. As expected in both plots, when the global

search approaches 100%, the ERS matches that expected

from a random search.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Fraction used for global search

L
o
g

1
0
(E

R
S

)

ERS: VOE, 100 point, 1/16 compression, Spike

Fig. 5. ERS metric for VOE algorithm with 100 evaluations and 20 trials.
Solid line is NMedian, dashed line is NBest and dash-dot is NWorst.
Dotted lines show associated 95% confidence intervals

Figure 5 shows log
10

(ERS) plotted versus the ratio of

global to local search. It is clear from the VOE plot in figure 5

that small amounts of global search and large amounts

of local search give best performance (approximately 109

evaluations would be required of a random search to match

the performance of VOE with 100 evaluations).

0.5 1 1.5 2
1

2

3

4

5

6

7

Log
10

(Population Size)

L
o

g
1
0
(E

R
S

)
ERS: DE, 100 point, F=0.7 C=0.5, Spike

Fig. 6. ERS metric for DE algorithm with 100 evaluations and 20 trials.
Solid line is NMedian, dashed line is NBest and dash-dot is NWorst

Figure 6 shows the performance of Differential Evolution.

A population size of 10 with 10 generations gave very

acceptable results with a random search of around 4000

points being needed to match the performance. The results

are as anticipated as DE is self-adaptive and does require

a decent population size in order to be most effective.

The comparison of NWorst and NMedian indicate that the

performance of DE is slightly erratic on this test function.

B. Test function 2 - ‘rings’

As the function is difficult, 1000 objective evaluations for

each trial proved necessary for both optimisers to identify

good solutions. With only 100 runs available, neither algo-

rithm proved any better than a random search and demon-

strates that it is important to test the baseline performance

of each algorithm. With the 1000 points, the VOE algorithm

managed to identify the true global optima once out of a total

of 200 runs (DE failed to identify the true global). Figure 7

shows the ERS metrics for the VOE algorithm and figure 8

shows the ERS metrics for the DE algorithm.

It is clear from the VOE plot in figure 7 that a wide

variation in the amount of global search made little differ-

ence to the median performance, with 10% global search

being a good compromise (approximately 300, 000 evalua-

tions would be required of a random search to match the

performance of VOE with 1000 evaluations). The line for

NWorst is very satisfactory and as it is better than NMedian

showing that the VOE algorithm tends to provide good

answers repeatedly on this problem.

Figure 8 shows the performance of Differential Evolution.

A population size of 20 with 50 generations gave acceptable

results with a random search of around 6000 points being

needed to match the performance of the actual 1000 eval-

uations. The performance of NWorst and NMedian indicate

that the performance of DE is again mildly erratic on this

0 0.2 0.4 0.6 0.8 1
2

3

4

5

6

7

8
ERS: VOE, 1000 point, 1/16 compression, Rings

Fraction used for global search

L
o

g
1
0
(E

R
S

)

Fig. 7. ERS metric for VOE algorithm with 1000 evaluations and 20 trials.
Solid line is NMedian, dashed line is NBest and dash-dot is NWorst

0.5 1 1.5 2 2.5 3
1.5

2

2.5

3

3.5

4

4.5

5

Log
10

(Population Size)

L
o
g

1
0
(E

R
S

)
ERS: DE, 1000 point, F=0.7 C=0.5, Rings

Fig. 8. ERS metric for DE algorithm with 1000 evaluations and 20 trials.
Solid line is NMedian, dashed line is NBest and dash-dot is NWorst

test function, but it is clear that for many combinations

of population size and number of generations, DE is not

significantly better than a simple random search.

C. Test function 3 - Huygen benchmark

As the test function is accessed via the web, 100 objective

evaluations for each trial proved to be a sensible upper limit.

Figure 9 shows the ERS metrics for the VOE algorithm and

figure 10 shows the ERS metrics for the DE algorithm.

It is clear from the VOE plot in figure 9 that the algorithm

is again quite robust to the amount of global search, with

10% or 20% global search again being a good compromise

(approximately 32, 000 evaluations would be required of a

random search to match the performance of VOE with 100

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

4.5

5

Fraction used for global search

L
o
g

1
0
(E

R
S

)
ERS: VOE, 100 point, 1/16 compression, Huygen 20_103

Fig. 9. ERS metric for VOE algorithm with 100 evaluations and 10 trials.
Solid line is NMedian, dashed line is NBest and dash-dot is NWorst.
Some points could not be evaluated due to the optimisation results being
better than the best held in the CDF.

0.5 1 1.5 2
1.6

1.8

2

2.2

2.4

2.6

Log
10

(Population Size)

L
o
g

1
0
(E

R
S

)

ERS: DE, 100 point, F=0.7 C=0.5, Huygen 20_103

Fig. 10. ERS metric for DE algorithm with 1000 evaluations and 10 trials.
Solid line is NMedian, dashed line is NBest and dash-dot is NWorst

evaluations). The lines for NBest and NWorst are satisfactory

but are both generally lower than NMedian showing that

the VOE algorithm with 100 points is more erratic than a

random search with 32, 000 points would be. With 35, 000
samples being used to create the cumulative probability

density function, the NBest line and NMedian lines have

been clipped for low ratios of global search.

Figure 10 shows the performance of Differential Evolu-

tion. A population size of 20 with 5 generations gave results

with a random search of around 160 points being needed

to match the performance of the actual 100 evaluations.

The performance of NWorst and NBest generally match

NMedian showing reasonably robust behaviour, although it is

not significantly better than a random search (the results are

all within the confidence intervals expected from a 100 point

random search). Generally we can see from NMedian that

DE is not suited to operation on this test function with only

100 points. When 1000 points are used, DE is much more

effective (yet not as effective as VOE with 1000 points).

VII. CONCLUSIONS

This paper has introduced a fundamental metric with

strong mathematical foundations for algorithm benchmarking

that allows the performance of different algorithms to be

quantified and compared directly and analytically. The metric

reveals not only the raw performance of the optimiser, but

also the reliability of the solutions the optimiser is likely to

generate.

The paper has applied the concept of the idealised search

heuristic to create a powerful new optimisation algorithm

that is designed to provide reliable performance for problems

where very few objective calculations can be performed.

The VOE algorithm allows full independent control over the

exploration and exploitation phases of the search, yet requires

minimal tuning. The research demonstrates how the new

algorithm exploits the information from all the evaluations

performed to give much more structure to the location of trial

points when compared to a typical evolutionary approach.

VIII. ACKNOWLEDGEMENTS

I would like to thank Cara MacNish, School of Computer

Science & Software Engineering, The University of Western

Australia for her help with the Huygens benchmark data sets.

REFERENCES

[1] Kalyanmoy Deb. Multi-objective optimization using evolutionary

algorithms. John Wiley & Sons, 2001. ISBN 0-471-87339-X.
[2] Y. Jin. A comprehensive survey of fitness approximation in evolution-

ary computation. Soft Computing Journal, 9(1):3–12, 2005.
[3] Cara MacNish. Huygens search and optimisation benchmarking suite.

http://karri.csse.uwa.edu.au/cara/huygens/cec2006.php. Last accessed
17/1/2006.

[4] Evan. J. Hughes. Multi-objective binary search optimisation. In
Second International Conference on Evolutionary Multi-Criterion Op-

timisation, EMO’03, pages 102–117, Faro, Portugal, 8-11 April 2003.
Springer LNCS.

[5] Chongshan Zhang and Khaled Rasheed. Improving GA search reli-
ability using maximal hyper-rectangle analysis. In The Genetic and

Evolutionary Computation Conference (GECCO’2005), pages 1185 –
1192, Washington DC, USA, 2005. ACM Press.

[6] Joseph O’Rourke. Computational Geometry in C. Cambridge Univer-
sity Press, 1993. ISBN 0-521-44592-2.

[7] Franz Aurenhammer. Voronoi diagrams – a survey of a fundamental
geometric data structure. ACM Comput. Surveys, 23:345–405, 1991.

[8] Malcolm Sambridge. Geophysical inversion with a neighbourhood
algorithm – I. Searching a parameter space. International Journal of

Geophysics, 138:479–494, 1999.
[9] Jonathan Richard Shewchuk. Updating and constructing constrained

delaunay and constrained regular triangulations by flips. In Nineteenth

Annual Symposium on Computational Geometry, pages 181–190, San
Diego, California, June 2003. Association for Computing Machinery.

[10] Rainer Storn and Kenneth Price. Differential Evolution- a simple
and effective adaptive scheme for global optimization over continuous
spaces. http://http.ICSI.Berkeley.edu/∼storn/code.html. last accessed
Jan 2006.

