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Abstract. This paper introduces a new metric vector for assessing the perfor-
mance of different multi-objective algorithms, relative to the range of perfor-
mance expected from a random search. The metric requires an ensemble of re-
peated trials to be performed, reducing the chance of overly favourable results.
The random search baseline for the function-under-test may be either analytic, or
created from a Monte-Carlo process: thus the metric is repeatable and accurate.
The metric allows both the median and worst performance of different algorithms
to be compared directly, and scales well with high-dimensional many-objective
problems. The metricquantifiesand is sensitive to thedistanceof the solutions
to the Pareto set, thedistributionof points across the set, and therepeatabilityof
the trials. Both the Monte-Carlo and closed form analysis methods will provide
accurate analytic confidence intervals on the observed results.

1 Introduction

This paper details a new metric,Multi-Objective Equivalent Random Search (MOERS),
that quantifies the performance of an algorithm on an objective function relative to
the expected performance of a random search. The metric returns the size of the ran-
dom search that would be required to achieve results of the same quality. The metric
is calculated through a non-parametric statistical analysis of the best solutions found
by the optimiser over an ensemble of trials, reducing the chances of occasional overly
favourable results biasing the comparison.

The metric focusses on both the median and worst performance of the optimiser
under test. Often when we run an optimiser many times, we only remember the good
results. Some optimisation routines are capable of providing spectacular results with
moderate frequency, but typical results are poor. Other optimisers generate satisfactory
results every time, but rarely produce spectacular solutions. If optimisation is being used
in a design phase where many repeated runs are possible, then the first algorithm that
can produce occasional spectacular results may be preferred. However, in a situation
where the optimisation is time-critical, the reliable algorithm is a better choice.

Much research has been performed on different metrics for assessing optimiser per-
formance [7, 6, 5]. The true performance of a multi-objective optimiser cannot be sum-
marised with a single number, or with only a single trial run. For a given test function
and optimiser, the MOERS metric provides 10 key performance measures, 5 for the
median performance and 5 for the worst-case performance. Each of the 5 is comprised



of 2 outer confidence intervals (indicate the distribution of points along the Pareto set),
2 inner confidence intervals (relate to the repeatability of the results) and the median
behaviour over the ensemble of trials (indicates the distance to the Pareto set).

In order to remove the effects of constraints, multi-modalities, discontinuous Pareto
sets etc., the optimiser results (i.e. the Pareto points) are normalised using the Cumu-
lative probability Density Function (CDF) of the objective surface.1 The CDF may be
calculated analytically from the objective functions and constraints, or generated using
a large Monte-Carlo random search (for problems without simple analytic solutions).
The metric may be calculated very quickly if an analytic solution to the CDF is used.

Section 2 summarises the Equivalent Random Search metric for single objective
problems, and section 3 expands the theory to encompass multi-objective problems.
Section 4 demonstrates the metric on a bi-objective function where the analytic CDF
has been calcuated, and also demonstrates that a true random search returns the correct
metric results. Finally section 6 concludes.

2 Equivalent Random Search Metric

2.1 Introduction

The Equivalent Random Search (ERS) metric assesses the performance of an algo-
rithm, relative to the expected performance of a random search on the same objective
function [4]. The metric gives a direct indication of how many points would be needed
in a random search to achieve the same solution quality. The metric can then be com-
pared to the actual number of objective evaluations used by the optimiser in order to
assess the effectiveness of the optimisation algorithm. For example, if 1000 objective
calculations were used by the optimisation process, but the ERS metric reported that
10,000 points would be needed by a random search to achieve equivalent results, then
the algorithm is performing well.

2.2 Objective Normalisation

To get a reliable assessment, the optimisation process is repeatedM times and the best
optima results,Yi : i = 1 . . . M , gathered. Each of theM results are transformed via
the cumulative probability density function of the objective surface,D(Y ), to generate
the probability of obtaining an objective valuebetter than the best value observed in
each of theM runs. This normalisation process allows even very rough, multi-modal
and deceptive functions to be used for evaluating the optimisers.

The functionD(Y ) can be generated for any objective functions by performing a
large uniform-random sample of the objective surfaces. Further details on Monte-Carlo
CDF generation are given in [4]. It is also possible (but not always trivial) to obtain
an analytic solution for the CDF if the equations for the objective function are known.
This allows the ERS metric to be calculated quickly, but more importantly, will allow
functions that have a very low density of points at the Pareto surface to be analysed
without resorting to massive Monte-Carlo searches.

1 Each objective function provides a unique problem to the optimiser, but a set of optimisers
may be compared directly if the results are generated for a common multi-objective function.



2.3 Metric Calculation

Once we have calculated the probability of a solution better thanY existing,D(Y ),
we can compare the result directly to a random search. For the random search, if we
generated a single random point, there would be a probabilityD(Y ) that the point
would be better thanY , and a probability1 − D(Y ) that the point will be worse than
Y . If we generateN independent random points, then we will not find a better solution
thanY with a probability of(1−D(Y ))N . Therefore the probability of findingat least
onesolution better thanY with anN point random search is given by:

D′(Y ) = 1− (1−D(Y ))N (1)

For example, ifD(Y ) = 1/1000 and we generatedN = 100 random points, the prob-
ability of at least one of theN solutions being better thanY is D′(Y ) =9.5%.

Importantly, the new cumulative density function,D′(Y ) in equation 1, describes
the probability that a random search ofN points would find an optimum value better
thanY . If we repeated anN -point random searchM times,D′(Y ) would describe
the distribution of theM results. Thus the median value ofY from our M searches
would be an approximation of the value ofY necessary to makeD′(Y ) = 0.5. We can
exploit this property ofD′(Y ) to create a metric that uses a simple random search as
its reference. As the reference can be described analytically, we can use the metric to
quantify the performance of any optimisation algorithm on any evaluation function.

The ERS metric is calculated by performingM independent runs of our optimi-
sation algorithm under test, and then exploiting (1) to calculate a value forN , given
the observed values forY from our optimiser. By settingD′(Ymedian) = 0.5, where
Ymedian is chosen to be the median result from ourM trials of the optimiser, we can
calculate the value forN to give us an equivalent size of random search that we would
have to perform to achieve the same median result.

Therefore we can re-arrange (1) (and taking logarithms) to give:

Nmedian =
log(0.5)

log(1−D(Ymedian))
(2)

Ultimately, the calculated value forNmedian is only an estimate and is subject to
sampling error (median is calculated by ranking theM values forY and finding the
central value). If we consider that the probability of the true value ofNmedian being less
than the estimate is 0.5, and the probability of the true value being greater is also 0.5, we
can describe the error in the estimate using a binomial distribution of the rank locations
with the two probabilities beingp = 0.5 andq = 1 − 0.5. A binomial distribution
can be approximated by a normal distribution whenMp ≥ 5 andMq ≥ 5. Thus a
minimum value ofM = 10 trials will suffice. The variance is given byMpq = M/4
and therefore the standard deviation byσ =

√
M/2. The 95% confidence limits of a

normal distribution are given by±1.96σ. Therefore the the upper and lower bounds to
give 95% confidence intervals on the estimate of the median correspond to the values
of Y from the ranked data in indexes(M + 1)/2± 1.96

√
M/2.

We can also process other statistics such as the best and worst values ofY and
associate them to the best and worst values expected from a random search. In practice,



the bestvalue found is subject to very wide confidence bounds unless a very large
M is used (for example, to find the 99th percentile,p = 0.01, q = 0.99, ∴ M >
500). However although the estimate of theworst value of Y should also require a
large number of samples, in practice it is far better behaved, and also a far more useful
indicator of algorithm performance.

For the random search, the probability given byD′(Y )M is the probability that
M searches will all return values better thanY . Therefore the cumulative probability
distribution in (3) is the distribution of probabilities that at least one worse value than
Y will be found inM trials. The distributionD′′(Y ) is therefore the distribution of the
worst optimisation results fromM trials.

D′′(Y ) = 1−D′(Y )M (3)

Equation 4 shows equations (3) and (1) re-arranged to obtain a median estimate and the
95% confidence limits of the worst optimisation value.

Nworstupper
=

log(1− M
√

0.025)
log(1−D(Yworst))

Nworstmedian
=

log(1− M
√

0.5)
log(1−D(Yworst))

Nworstlower
=

log(1− M
√

0.975)
log(1−D(Yworst))

(4)

The metricNmedian in (2) is the size of the random search optimisation that must
be performed, that when repeatedM times, will obtain a median optimaYmedian. This
metric is an indicator of typical algorithm performance (distance to the true global ob-
jective value) and a value ofNmedian larger than the actual number of function evalua-
tions used indicates an optimisation algorithm well suited to the test function.

The metricNworst in (4) is the size of the random search optimisation that must be
performed, that when repeatedM times, will obtain a worst optima ofYworst. If this
metric is larger thanNmedian, then the spread of the inferior solutions from the optimi-
sation process (i.e. variance of inferior solutions) is smaller than the spread that would
be obtained by a random search process. This is a desirable feature of optimisation al-
gorithms as it suggests that if only a single run of the optimiser can be performed, there
is confidence that a good solution will be identified. IfNworst is smaller thanNmedian,
the optimiser is prone to premature convergence on poor solutions (highly undesirable).

Any situations that giveNmedian lower than the actual number of evaluations used
indicate that a random search would have most likely provided better results than from
the optimiser.

3 Multi-Objective Equivalent Random Search

The extension to multi (and many) objective problems is straightforward. To assess the
quality ofM non-dominated surfaces generated from the optimisation algorithm under
test, each objective vector in each non-dominated set can be combined using an aggre-
gation function to allow a set of single-objective metrics to be calculated. For assessing



Pareto sets, the weighted min-max aggregation function in equation 5 is suitable, but
alternative metrics may be used if desired (e.g. for assessing objective surfaces).

The weighted min-max score ofk objectives is calculated using equation 5,where
wi is the weight of the ith objective,Oi. Weighted min-max is able to generate points on
both convex, concave and discontinuous Pareto sets.

Y =
k

max
i=1

(wiOi) (5)

As the weight vector is changed, the aggregated objective surface is modified and
the cumulative probability distribution is modified. If a large random search has been
performed of the objective space, then the results can be transformed by the aggregation
function and sorted to form a CDF. Although the vectors will not be truly independent,
one large random sampling of the objective space may be re-cycled for calculating the
CDFs for any weight vector set (equation 7 shows an example analytic CDF).

The multi-objective assessment is performed by first generating a set ofH weight
vectors (typicallyH = 100 or more), givingWj : j = 1 . . .H, that span the true
Pareto surface (or the non-dominated surface of the large random sampling). Each of
the vectorsWj corresponds to a full set of weights,Wj = [w1j w2j . . . wkj ].

For each of thej ∈ H weight vectors, all then ∈ M non-dominated surfaces are
scanned in turn, aggregating usingWj . The best performing aggregated point from each
of theM non-dominated surfaces is gathered,Ynj , resulting inM best points for each
of theH test weight vectors.

Thus each of the sets ofM non-dominated surfaces can be assessed using the sin-
gle objective theory. If we take the first weight vectorW1 for example, we can take
the worst and median of theYn1 : n ∈ M aggregated values, and process using the
CDF corresponding to the vectorW1 with equations 2 and 4 and therefore obtain the
performance in the direction of the weight vectorW1. The process can be repeated for
all of theH weight vectors, yielding vectors of results forNmedian, Nworst and their
associated confidence intervals. Sorting the vectorsNmedian etc. will create CDFs of
the performance across the entire Pareto surface.

The median of theNmedian vector can be used as a good indicator of general
performance, but for the most accurate representation, the overall 95% limits on the
Nmedian vector should also be reported (the ‘outer’ confidence interval), along with
the analytic 95% confidence limits on the median ofNmedian (the ‘inner’ confidence
interval). As the Pareto surface is being analysed using an ensemble of aggregations,
the ‘single objective’ problem that is being analysed is being changed as we scan the
Pareto set with the weight vectors. Thus it is likely that the optimiser under test may
perform differently on different regions of the Pareto set (typically the edges of the
Pareto surface are different to the central region) and a spread of ERS values that is
wider than the analytic error will be observed. The spread (especially the lower limit)
can be very informative about the reliability of the optimiser at identifying solutions.
The ‘outer’ confidence limits are calculated from this spread and relate closely to the
distribution of solutions across the Pareto set, as any gaps in coverage will result in a
low ERS value for the lower ‘outer’ confidence limit. The multi-objective ESR met-
rics are be denoted by the quintet of results: [N−

medianouter
N−

medianinner
Nmedian

N+
medianinner

N+
medianouter

], abbreviated to [N−−
M N−

M NM N+
M N++

M ].



A similar set of results can be provided for the worst case performance too: [N−−
W

N−
W NW N+

W N++
W ]. The outcome is 10 numbers that summarise the equivalent

random search sizes that would be required to mimic the performance distribution of
the optimiser under test.

4 Example Analytic Density Function

The equation for the cumulative density function under the weighted min-max aggre-
gation function has been derived for a simple multi-objective test function. Equation 6
details the function, and the objective space is depicted pictorially in Fig. 1.

O1 = v
√

x

O2 = v
√

y

1 ≤ O1 +O2 0 ≤ x, y ≤ 1 (6)
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Fig. 1. Objective space and Cumulative Probability Density function for the “diagonal” function.

In Fig. 1, the Pareto surface is simply a diagonal line across the objective space
which is defined by the constraint boundary of the feasible regionO1 + O2 ≥ 1. To
calculate the cumulative density functionD(Y ), the two objectives are combined using
equation 5 to form the metricY . If the points in objective space that result in a constant
metric value ofY are plotted, aniso-objectivecontour results and a typical example is
shown in blue on Fig. 1. If the distribution of points in the objective space is uniform
(whenv = 1), thenD(Y ) is simply the ratio of the area of the superior feasible region
bounded by the iso-objective line defined byY (region A in the figure), to the total area



of the objective space. If the distribution of the objectives is not uniform, thenD(Y ) is
the area integral of the probability density of the objectives bounded by the constraints
and the iso-objective contour defined byY .

In the example shown in Fig. 1,D(Y ) will grow as a square-law relationship until
the iso-objective line reaches the boundary of region B, then will progress on a com-
pound law thereafter (e.g. as seen in region C). The resulting equation forD(Y ) is given
in equation 7, wherew = max(w1, w2), min(w1, w2) = 1, w1 andw2 are the weights
applied to objective 1 and 2 respectively andv is a shape parameter that describes the
density of the Pareto set. An integer shape parameter in the range[2, 10] provides a
useful range of difficulty for the optimisation process.

D(Y ) =





Y 2v

wv − Y v(1−Y )v− v
v∑

r=0

(
v
r

) (−1)r

v+r

[(
Y
w

)v+r− (1−Y )v+r
]

Y <1,

Y v

wv − v
v∑

r=0

(
v
r

) (−1)r

v+r

(
Y
w

)v+r
Y ≥1.

(7)
Figure 1 shows the cumulative density function for equation 6 andw = 2, for v over

a range [1,10]. The ‘knee’ in the CDF whenY = 1 is visible clearly. At low values for
v, there are a large number of constrained solutions and the density of the solutions at
the Pareto surface is high. With a high density of solutions, the random search performs
well and the optimisers have difficulty improving on the random solutions. At high
values ofv, there are very few constrained solutions, but the Pareto set density is low
and the random search is not so good. There is more scope for improvements by the
optimisation algorithms. A good general-purpose optimiser will perform satisfactorily
across a wide range of Pareto set densities.

5 Performance Trials of Optimisers

To illustrate the metric, two alternative optimisation strategies have been tested against
the objective function in equation 6 with a shape parameter ofv = 5 to provide a Pareto
set with a reasonably low density. As a baseline, random search has been used to confirm
that the MOERS metric is truly relative to the analytic random search process. The
second optimiser is NSGA-II using software downloaded from the algorithm authors
website [1]. In order to allow independent verification, the Matlab software for the
MOERS metric used to generate the results in this section is available at [3].

Figure 2 shows the different metrics as assessed from NSGA-II [2] on the objective
function in equation 6 (with a shape parameter ofv = 5) using 5000 actual objective
calculations,H = 200 weight vectors andM = 100 repeated trials. On the figure, the
horizontal solid line indicateslog10(5000) = 3.7, the upper varying solid line is the
median equivalent random search size (NM ) and the lower varying solid line is the
worst-case equivalent random search size (NW ). The dashed lines indicate the upper
and lower bound of the analytic (inner) 95% confidence intervals (N+

M , N−
M andN+

W ,
N−

W ). The horizontal dashed lines indicate the locations ofN++
M andN−−

M andN++
W

andN−−
W (outer confidence limits).

The corresponding equivalent random search metrics are shown in table 1. Table 2
shows theLog Search Ratio(LSR) which is the logarithm of the ratio of the ERS metric
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Fig. 2. Multi objective equivalent random search metric for NSGA-II (left) and random search
(right) on test function equation 6

over the actual number of evaluations used. A LSR of zero would indicate that the
optimiser is equivalent to a random search.

Table 1.Equivalent random search for NSGA-II with equation 6 and 5000 evaluations.

Metric N−− N− N N+ N++

Nworst 36914 93682140460233808 1534218
Nmedian 78128 157795217641306711 217931129

log10(Nworst) 4.57 4.97 5.15 5.37 6.19
log10(Nmedian) 4.89 5.20 5.34 5.49 8.34

Table 2.Log Search Ratio for NSGA-II with equation 6 and 5000 evaluations.

Metric LSR−− LSR− LSR LSR+ LSR++

LSRworst 0.87 1.27 1.45 1.67 2.49
LSRmedian 1.19 1.50 1.64 1.79 4.64

It is clear from Fig. 2 that there is a definite improvement over the analytic random
search with the optimisation algorithm as all metrics are above the horizontal solid line
(and therefore all LSR values are positive). The shallow slope ofNM andNW on
the left of the graph indicates that there are no large gaps in the Pareto set in any of
the 100 trials. TheNW andNM curves are near coincident for the worst 150 weight
vectors, indicating that the CDF of the spread of the optima is the same shape as would
be expected from a random search (a good feature). The results forNW in the right-
hand 50 weight vectors however are lower than theNM results and suggests that the



worst case results are spread much further than theNM equivalent random search
would provide. This indicates that the behaviour is becoming erratic over a few small
regions of the Pareto surface and the algorithm is converging to local solutions. The
good median performance shown on the right-hand-side is due to the random search
not being good at finding the extremes of the Pareto set for the test problem. NSGA-II
however, obtains a good spread of results right across the Pareto set. Hence the best of
theH median ERS vectors are at the edges of the Pareto set, and the worst at the centre.
An ideal algorithm would haveNW consistently higher thanNM demonstrating a
very robust optimiser whose bad results are still very good. Overall the assessment is
that NSGA-II is performing well, a random search would need approximately 43 times
as many points (101.64) to achieve equivalent optima.

Table 3.Log Search Ratio for random search with equation 6 and 5000 evaluations.

Metric LSR−− LSR− LSR LSR+ LSR++

LSRworst -0.16 -0.21 -0.03 0.19 0.16
LSRmedian -0.10 -0.11 0.01 0.15 0.12

Figure 2 and table 3 shows the results of performing a 5000 point random search
on equation 6. The search was repeatedM = 100 times and is assessed overH = 200
weight vectors. The horizontal solid line shows the actual number of points used and it
is clear that the metrics all lie within the anticipated 95% confidence intervals predicted
from the median values of the ensemble of weight vectors. The random search test is
very useful as it confirms the correctness of the analytic equations.

The two optimisation processes have been tested further with 10 different maximum
number of evaluations in the range [800, 500000]. At each configurationM = 100
trials were performed in order to allow the MOERS metrics to be calculated with useful
confidence intervals. The MOERS results were converted to the Log Search Ratio so
that a direct comparison with the performance against the analytic random search can
be made as the algorithm computational allowance is increased.

Figure 3a shows a graph of [LSR−−M LSR−M LSRM LSR+
M LSR++

M ] for a range
of different search sizes with NSGA-II. It is clear that the performance relative to the
analytic random search improves as the number of evaluations allowed increases, but
eventually, the performance ‘saturates’. Different optimisers saturate at different levels
and the saturation is an indication of intrinsic optimisation capacity on the function
under test.

Figure 3b shows a graph of [LSR−−M LSR−M LSRM LSR+
M LSR++

M ] for a range
of different search sizes and the random search algorithm. It is clear that the Log Search
Ratio is a good approximation to zero, i.e. the actual number of points used matches
the analytic prediction that was based on theM = 100 non-dominated sets that were
analysed. It is also clear thatLSR−−M is very similar toLSR−M , andLSR+

M is very
similar toLSR++

M , demonstrating that the analytic confidence intervals are accurate.
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Fig. 3. Plot of Log search ratio of NSGA-II and random search for different search sizes on
equation 6

6 Conclusions

This paper has introduced a new metric for assessing the performance of multi-objective
optimisation algorithms. The metric uses an analytic random search as the reference,
allowing performance to bequantified. The metric requires multiple independent runs
of the optimiser and assesses both median and worst performance, and provides analytic
confidence intervals on the results. The metric is both repeatable and accurate.
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