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Abstract— Existing evolutionary methods capable of true
Many-Objective optimisation have been limited in their appli-
cation: for example either initial search directions need to be
specified a-priori, or the use of hypervolume limits the search
in practice to less than 10 objective dimensions.

This paper describes two extensions to the Multiple Single
Objective Pareto Sampling (MSOPS) algorithm. The first pro-
vides automatic target vector generation, removing the require-
ment for initial a-priori designer intervention; and secondly re-
defines the fitness assignment method to simplify analysis and
allow more comprehensive constraint handling.

The significant enhancements allow the new MSOPS-II
ranking process to be used as part of a general-purpose
multi/many objective optimisation algorithm, requiring minimal
initial configuration.

I. INTRODUCTION

Recent research has demonstrated that many-objective op-

timisation, where 4 or more objectives are being considered,

is not trivial [1], [2], [3]. Evolutionary optimisation algo-

rithms have been developed that are capable of generating

a useful approximation of the Pareto surface when many

objectives are considered, however until now they have

had limitations: for example the first true many-objective

evolutionary optimiser, MSOPS [4], required a set of target

vectors that define the search direction to be specified a-

priori; SMS-MOEA [5] is based on the hypervolume metric

and consequently processing is only practical at present for

less than 10 objectives due to the time-consuming calculation

of the hypervolume. This paper describes two extensions to

the original MSOPS algorithm that enable it to be used as a

general-purpose objective ranking method for 2+ objectives.

The first extension is the re-definition of the objective ag-

gregation process. Originally a double ranking approach was

employed which had a tendency to focus heavily on the edges

of the Pareto front regions. The new aggregation method can

be described in a compact analytic form and can be processed

more quickly. The new aggregation method provides a more

consistent search focus during the optimisation run, although

the difference between final non-dominated fronts generated

by the two methods is statistically insignificant. Multiple

assessment metrics, such as weighted min-max and VADS

can still be applied simultaneously. One key advantage of

the new aggregation method is to provide a numerical fitness

assignment to each member of the population, allowing a

range of ranking methods to be employed. In particular, this

paper discusses how the process of stochastic ranking [6] can

be employed for controlled constraint handling.
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The second extension is the ability to generate the tar-

get vectors for the search on-the-fly, removing the need

to specify any search directions a-priori. Thus when an

unknown problem is first tackled, the automatic target vector

generation system can be used to explore the many-objective

space, calculating approximations of the objective scalings

and utopia point. The information on the objective structure

can then be used to target specific regions of the objective

space using an MSOPS a-priori target vector specification

process and therefore aid the decision maker in generating

informed selection of the final solutions. Additionally, a full

archive of the best solution set identified by each of the

metrics is maintained by the algorithm in order to aid final

decision making, and also for use within the reproduction

methods to allow a true elitist behaviour.

Section II describes the original MSOPS algorithm and

describes the new fitness aggregation method. Section III

details the automatic target vector generation process. Sec-

tion IV provides a comparison and discussion of the new

MSOPS-II algorithm against the original MSOPS system.

Finally section V concludes.

II. MULTIPLE SINGLE OBJECTIVE PARETO SAMPLING

Multiple Single Objective Pareto Sampling (MSOPS) [4] is

a technique that allows multiple single objective optimisation

searches to be run in parallel and therefore exploit a larger

effective working population. Each of the aggregated opti-

misations is directed by its own vector of weights, or target

vector. Thus the algorithm uses a matrix of target vectors to

search in parallel. It is also possible to combine searches in

different directions, with different reference points, searches

using different aggregation functions, all within a single

optimisation run. The key advantage is the algorithm does not

rely on Pareto ranking to provide selective pressure. When

target vectors are decided a-priori, MSOPS provides an

active probing of the Pareto set, rather than passive discovery.

The operation of MSOPS is to generate a set of a-priori

target vectors, T , and evaluate the performance of every indi-

vidual in the population, P , for every target vector, based on

a conventional aggregation method. As aggregation methods

(eg. weighted min-max, ǫ-constraint, goal attainment etc.)

are very simple to process, the calculation of each of the

performance metrics is fast.

Thus each of the members of the population set P has

a set of scores, one for each member of T , that indicate

how well the population member satisfied the range of

target conditions. The scores are held in a score matrix, S,

which has dimensions ||P || × ||T ||, where || · || indicates set

cardinality. Figure 1 demonstrates the process for a single



Fig. 1. Process of generating MSOPS ranking. Details are for one
population member at [1.1, 0.3], forming one row of matrix S for the
weighted min-max aggregation method with 5 target vectors. Note: The
target vectors do not need to be normalised to unit length as they are sorted
in independent columns.

population member using weighted min-max as the aggre-

gation function. Each column of the matrix S corresponds

to one target vector (across the population P ) and is now

ranked, with the best performing population member on the

corresponding target vector being given a rank of 1, and the

worst a rank of ||P ||. The rank values are stored in a matrix

R. Each row of the rank matrix R may now be sorted, with

the ranks for each population member placed in ascending

order. The R matrix now holds in the first column the highest

rank achieved for each population member across the set

of target vectors. The second column will hold the second

highest rank achieved etc. Thus the matrix R may be used

to rank the population, with the most fit being the solution

that achieved the most scores which were ranked 1 etc.

In this original ranking process, if a solution was at the

edge of the Pareto/Objective front and there were target

vectors beyond the region as demonstrated in figure 2, the

population member right at the edge would be the best on all

of the unobtainable target vectors. Thus there is significant

selective pressure towards solutions at the edges of the

front (extreme edges, or edges of discontinuities), but could

cause a clustering of the population in these regions. More

fundamentally, the use of an a-priori target vector generation

process required much decision maker input but could suffer

heavily from a loss of performance if many target vectors

did not transect the region of feasible objective space. These

target vectors serve to focus the search at the edges of the

region, but otherwise go unused and can curtail the efficiency

of the algorithm. By generating target vectors automatically,

it is this loss of efficiency that is corrected.
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Fig. 2. Original a-priori target vector generation method showing scenario
with many target vectors not intersecting the feasible objective surface. The
dashed lines show the direction of the target vectors, circles represent the
archive of non-dominated points, the dots are the locations of the population
members on the final generation.

Additionally, as the ranking was based on a lexicographical

ordering process, it was not trivial to incorporate methods

such as stochastic ranking to handle constraints. In the

original MSOPS algorithm, the constrained solutions (in-

feasible) were removed from the population and the valid

solutions (feasible) ranked based on the above MSOPS rank-

ing method. The constraints were aggregated into a single

value (typically a Euclidian norm or weighted min-max

process) and then the constrained solutions ranked in order of

degree of constraint violation, and rank penalised to ensure

infeasible solutions are always ranked lowest. Additionally,

to help to improve the discovery of the edges of the objective

region, the population members that had an extreme objective

value as part of their evaluation were removed from the

ranking process and given the highest possible rank values

to guarantee that they would be propagated into subsequent

generations. Therefore the final rank was generated as (in

priority order):

1) The valid population members that have extreme ob-

jective values in each dimension,

2) the valid population members ranked based on the

target vector distribution,

3) the constrained solutions ranked by degree of con-

straint violation.

This ranking process functions well, but has a tendency



to over-penalise constrained solutions early in the search

process.

A. MSOPS-II fitness assignment process

The fitness assignment process has been re-evaluated and

simplified. The original MSOPS process required sorting

down the columns of matrix S to create matrix R, then R
is sorted across the rows, and then finally the rank-order

is generated by a sorting of rows. Thus three independent

sort operations were used. The first operation was creation

of the matrix S as order O(pv) then the first sort is of

order O(pv log(v)), where p is the number of elements in

the population being sorted (usually the aggregation of the

parent and offspring populations), and v is the number of

target vectors. The second sort is O(vp log(p)) and the final

sort is O(p log(p)). In practice, p will often be greater than

v and therefore the process is dominated by O(vp log(p)).
We can define a many-objective problem as:

Find ~X that minimises ~F ( ~X) = [F1( ~X), . . . , FNf
( ~X)]

subject to:

~g( ~X) ≤ 0 := [gq( ~X) ≤ 0, ∀q ∈ [1, Ng]] (1)

~h( ~X) = 0 := [hw( ~X) = 0, ∀w ∈ [1, Nh]] (2)

where F () is one of Nf objective functions, g() is one

of Ng inequality constraints and h() is one of Nh equal-

ity constraints. In the remainder of this paper (and also

the accompanying software) it is assumed that all equality

constraints have been converted to inequality constraints by

defining g( ~X) = h( ~X)−ǫ, where ǫ is a small tolerance value.

A set C ⊆ P := {∃gq( ~Xj) 6≤ 0 : ∀q ∈ [1, Ng], j ∈ [1, ||P ||]}
can be defined which contains all solutions which violate at

least one constraint, leading to the set K ⊆ P as the set of

valid solutions K := P \ C.

For the new approach, the aggregate fitness, ri, of the

ith member of P is calculated using equation 3, where

fn(~Fi, ~Vn, ~Zn) is the aggregation function n with target

vector ~Vn and reference point ~Zn for objective vector ~Fi.

ri∈P = min
∀n∈T

(

fn(~Fi, ~Vn, ~Zn)

min∀j∈K 6=i(fn(~Fj , ~Vn, ~Zn))

)

(3)

Thus the fitness for a population member is the best metric

value obtained, after scaling the results of each target vector,

relative to the best performing valid solution on the target

vector (not including the population member currently being

evaluated). Equation 3 is calculated by:

1) Calculate metrics for each population member on each

target vector to create matrix S,

2) for each column (target vector), find the minimum and

second smallest metric value (from valid population

members only),

3) scale each column by the minimum value found, except

for the row which gave the minimum value: use the

second lowest to scale this result,

4) for each row (population member), find the minimum

scaled value to represent fitness, resulting in a column

vector as the final aggregate fitness,

5) sort column vector to rank population.

The new fitness aggregation method still requires matrix

S to be generated in O(pv) time. Finding the minimum and

second lowest can be performed in almost linear time, hence

the time complexity is approximately O(p). The second

minimum process is linear in time and has a complexity

O(v). The final sort of the population is O(p log(p)). The

new process is therefore dominated by O(pv). In comparison

to the original MSOPS ranking scheme, the time complexity

was dominated by O(vp log(p)).
Two key aggregation methods have been employed within

the MSOPS process previously: weighted min-max and

Vector-Angle Distance Scaling (VADS). Empirical studies

have shown that running the MSOPS algorithm with both

Weighted Min-Max and VADS will provide superior op-

timisation performance than VADS or weighted min-max

alone. As each column of the matrix S that holds the raw

aggregated performance is normalised by a best-performing

solution in the column, a compound S matrix may be formed

by extending the rows by concatenating the results from the

different metrics used within the system. Thus the ability

to use multiple metrics simultaneously is preserved. The

weighed min-max and VADS metrics are detailed as:

1) Weighted Min-Max: The weighted min-max score of

Nf objectives is calculated using (4), where wi is the weight

of the ith objective, Fi, and Zi is the ith component of a utopia

reference point.

f =
Nf

max
i=1

(wi(Fi − Zi)) (4)
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Fig. 3. Iso-fitness contours for the Weighted Min-Max aggregation method.

Weights are w1 = 2 and w2 = 1, reference is ~Z = [0 0]

Figure 3 shows the iso-fitness contours for the weighted

min-max aggregation function with a reference point at the

origin. An iso-fitness contour shows lines of constant fitness

after the fitness assignment process. Thus the relative merit

of different objective vectors locations can be established.

Points which lie on the same iso-fitness contour will result

in exactly the same fitness value after the fitness assignment

process.



Weighted min-max iso-fitness lines form ‘corners’ and

the method is able to generate points on both convex and

concave Pareto sets. If the optimisation process converges

to a solution that exactly ‘matches’ the weight vector, then

w1F1 = w2F2 = . . ., allowing the convergence of the

solution with respect to the weights to be assessed. The

weight vector corresponds to a point on the Pareto set in the

true direction given by the vector ~V = [1/w1, 1/w2, . . .].
Weighted Min-Max is sometimes also referred to as a

Weighted Tchebychev Norm (spelling of Tchebychev may

vary) and is a variant of the Lp norm method with p = ∞.

The Weighted Min-Max used in this paper can alternatively

be considered as a weighted L∞ metric.

2) Vector Angle Distance Scaling (VADS): Vector Angle

Distance Scaling (VADS) is a new metric first introduced

in [4]. The metric is designed specifically for identifying

the Objective Front, rather than just the Pareto front. The

Objective front is the entire leading-edge of the feasible

objective space region. The Pareto front is therefore a subset

of the objective front. If the objective front is identified, then

areas where ‘gaps’ appear in the Pareto set can be analysed:

if there are objective front solutions that lie within the gap,

then the break in the Pareto front is a discontinuity due to

a very deep or reentrant concavity. If there are no objective

front solutions in the region, then it is likely that the feasible

objective region is comprised of disconnected sub-regions. In

bi-objective problems, it is not difficult to identify regions of

discontinuity in the Pareto front alone. However, even with 3

objectives, a discontinuity may present as a ‘hole’ and is not

simple to identify without knowing the shape of the objective

front too.

The VADS score is the magnitude of the vector of objec-

tives (|~F |), divided by the cosine of the angle between the

vector of objectives and a target vector, where the resulting

angle cosine is then raised to a high power. Thus an objective

vector that forms a point lying on the target vector is assigned

a fitness which is the distance along the target vector. As the

objective vector strays from the target vector, the fitness is

increased rapidly with increasing offset angle.

The cosine of the angle can be calculated conveniently by

a dot product operation. The score equation for Nf objectives

is calculated using (5), where ~V is the Nf -dimensional unit-

length target vector which describes the point on the objective

front to search for, ~F is the Nf -dimensional objective vector,
~Z is a utopia reference point, | · | indicates vector magnitude

and b is a constant factor for scaling the cosine result

(typically b = 100).

f =
|~F − ~Z|

(

~V ·
~F−~Z

|~F−~Z|

)b
(5)

Low values for b may lead to difficulty in identifying very

sharp concavities in the objective front. The dot product of

the vector ~V with the shifted objective vector ~F − ~Z must

remain positive for the basic VADS metric to function cor-

rectly, and consequently objective offset ~Z may be adjusted

automatically for proper operation.
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Fig. 4. Iso-fitness contours for the Vector-Angle Distance Scaling aggre-

gation method. Weights are ~V = [1, 1], b = 100, reference is ~Z = [0 0].
Logarithm of fitness plotted for clarity.

Figure 4 shows the iso-fitness contour for a weight vector

of ~V = [1, 1], reference of ~Z = [0 0] and shaping parameter

b = 100. The ‘tear-drop’ shaped iso-fitness contour is made

thinner by increasing b, allowing sharper concavities to be

probed. With very high values of b, care must be taken to

prevent numerical instability. In the figure, the logarithm

has been taken to reduce the dynamic range of the metric

values experienced in the optimisation process. The use of

logarithms allows (5) to be re-formulated as shown in (6)

and reduces the impact of numerical imprecision.

f = exp
(

(b + 1) log(|~F |) − b log
(

~V · (~F − ~Z)
))

(6)

As the weight vector is changed, the iso-fitness contour

follows the vector, rather than being aligned to the objective

axes as in the weighted min-max function. The final solution

identified by an optimiser using the VADS metric should

have the objective vector ~F lying parallel to the target vector
~V . Thus the angle between the two vectors can be used to

assess final convergence. As VADS is tolerant of ‘folds’

in the objective surface that cause discontinuities in the

Pareto front, angular errors between ~V and ~F indicate non-

obtainable sections in the objective region.

III. AUTOMATIC TARGET VECTOR GENERATION

An ideal set of target vectors would provide even coverage

of the feasible objective surface, given by the set Z ⊂ IRNf .

If we consider a utopia point that is defined as the minimum

achieved objective value in each objective dimension, then

one definition of an even coverage is a set of target vectors

where for each vector, the angle to the nearest neighbour

vector, when projected from the utopia point, is maximised.

This definition using angles between vectors is satisfactory

with even high-dimensional objective spaces. If Euclidean

distances were considered, then they would need to be

distances as measured across the great-arc of the hypersphere

in order to achieve a uniform distribution. As the dot product

of two unit-length vectors provides the cosine of the angle

between them, angle is preferred as it is very simple to

calculate.

Once the extreme limits of the feasible objective region

are identified, giving limits to the set Z , a uniform spread of



N vectors could be generated by the minimisation problem:

Find the set of vectors Q = {~V1, . . . , ~VN} such that

z =
N

max
i=1

N
max

j=1,j 6=i
(~Vi · ~Vj) (7)

is minimised, subject to Q ⊂ Z

The inner maximum operator finds the nearest neighbour

in angle (dot product provides cosine of angle and cos(0) =
1, therefore maximising finds smallest angle), the outer

maximisation finds the smallest of the nearest neighbour

angles in order to give the metric z. The set of vectors

Q is then optimised in order to minimise the metric z, i.e.

maximise the worst-case angle to a nearest neighbour.

Unfortunately (7) is not often simple to optimise. However

if we form an archive, the set A ⊂ IRNf , of all the best

solutions found to date, an approximation can be formed

by ‘boot-strapping’ the problem by setting Z = A, so that

the archive of the population is used to supply a finite set

of vectors to search over. Unfortunately even finding an

optimum set out of this restricted search space is not quick

to process.

A further approximation is to use the current population to

provide the source for the new target vectors. The procedure

is sub-optimal, but effective in practice due to the semi-

random nature of the EA re-visiting areas regularly. The

method is to take the current target vector set and augment

it with each member of the population in turn (with the

objectives offset by the reference point, scaled and then

normalised to create a valid search direction vector). Once

augmented by a population member, all the angles to the

nearest neighbours are calculated, and the solutions with

the nearest neighbours are identified. By definition, there

will always be at least two solutions with the same nearest

neighbour as pairwise comparisons have been made, so

the second nearest neighbour etc. must be considered in

turn for the pair until the most crowded is identified and

can be removed, restoring the target vector set back to its

original size. The next population member is then used to

augment the new set and the process repeated. The process

requires O(p(v + 1)2) calculations per generation, but I

hypothesise that the complexity could be reduced through the

correct choice of data structure and re-use of prior pairwise

calculations.

By only harvesting target vectors from the current popula-

tions, there is minimal opportunity for target vectors outside

of the Pareto region to be generated, improving algorithm

efficiency. However, the exploration of the edges of the

objective region is not as strong when compared to a set

of vectors generated a-priori. Figure 5 shows the final target

vector set from a typical two-objective optimisation run. It is

quite apparent that the spread of target vectors is sufficiently

uniform and covers the objective surface well.

Importantly, the maximum range of the objective values

that are encountered should be tracked in order to scale

the objectives sensibly as the dot-product between vectors is

influenced by objective scaling. There may be some extreme
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Fig. 5. Example final set of 50 target vectors generated automatically
showing sufficiently uniform spreading in angle across the objective surface.
Population of 50 for 100 generations. Automatically generated utopia point
= [0.75 0.46], automatic objective scaling = [0.16 0.28]

functions (for example if objective values can go to infinity)

that may still require manual scaling. Additionally, the min-

imum objective values in each dimension ever observed in a

valid solution should also be recorded in order to generate

a utopia point for a reference for the target vectors. In the

early generations of the algorithm, the objective scaling and

utopia point are updated often, however towards the end

of the optimisation process they are more stable. The early

instability will reduce the efficiency of the algorithm slightly,

but the effect appears to be minor in practice.

IV. EXPERIMENTAL DESIGN AND RESULTS

A. Hypotheses

Four hypotheses must be tested:

1) The difference in behaviour between the original rank-

ing method and the new analytic fitness assignment

process is insignificant;

2) With fixed vector sets, performance is reduced when

many target vectors do not intercept the feasible ob-

jective region;

3) The automatic target vector generation method is su-

perior to a fixed target vector set that has many target

vectors which do not intercept the feasible objective

space;

4) Choosing one parent from an elite archive as part of the

crossover operator is superior to crossover just within

the current population.

B. Evolutionary Algorithm Design

For demonstration purposes, a variant of a real-valued

Evolutionary Programme that uses adaptive mutation and

restricted crossover from an archive has been used. The

MSOPS-II process does not specify the offspring generation/

selection method as all operators should be designed to suit

the chromosome structure/ problem being optimised.



The offspring generation process performs the following

steps for each member of the population to generate one

offspring:

1) A tournament selection between NT = 5 members

of the archive to select a solution which is closest to

the current population member. Euclidian distance is

calculated, with the tournament being performed either

in objective or decision space with 50% probability.

2) Intermediate crossover between the chosen archive

solution and the current population member is used to

create a proposed offspring: X ′
i = αiXi+(1−αi)XAi :

∀i, where X ′
i is a gene of the proposed offspring, Xi

is a gene of the current population member, XAi is

a gene of the archive member and αi is a uniform

random number in the range [-0.25, 1.25]. Uniform

crossover between the current population member and

the proposed offspring is performed using a probability

of swapping genes of 50% per gene loci.

3) The standard deviation of the mutation of the popu-

lation member is mutated by σ = 0.977σ exp(U/2),
where U is a uniform random number in the range

[0,1].

4) Gaussian mutation is added to each gene with a prob-

ability of 90%, where the mutation standard deviation

is given for each gene that is mutated by X ′′
i =

X ′
i + N(0, σ2).

5) The genes in the chromosome are tested against the

upper/lower bound of the gene. Any genes that are

found to violate a bound are set to a random value

chosen uniformly in the range between the gene limit

and the gene value of the parent solution (from the

population not the archive). This mechanism is impor-

tant for functions where the Pareto set lies close to

the gene limits in decision space: simply cropping the

gene value at the limit does not work as well.

For the experiments where an archive is not used, where an

archive set is mentioned above, it is replaced by the current

population. A population of 50 for 100 generations and 50

target vectors were used in all trials. The tests using the

original MSOPS ranking method set all constrained solutions

to be inferior in the ranking to the valid solutions. For the

analytic fitness assignment method, a variant of stochastic

ranking [6] with pf = 0.4 was used. It should also be noted

that the crossover and mutation are quite simple and may not

perform well on rotated functions.

The classic stochastic ranking process performs a com-

parison on objectives if both are feasible, or if a uniform

random number is less than the factor pf ; and compares

on constraint violation otherwise. It was found that as the

Pareto front is defined by a constraint boundary, constrained

solutions that were between the Pareto front and the origin

were often forced to move away from the Pareto front, rather

than towards it as the objective values improved when moved

towards the origin. Thus a modification was made so that if

it was decided to test on objective fitness, but one or both of

the solutions were constrained, the MSOPS assigned fitness

used for ranking was also tested. As the MSOPS fitness is

normalised only by valid solutions, any fitness assignment

less than unity for a constrained solution must be forward

(in a minimisation sense) of the current non-dominated front

and could be at risk of being beyond the Pareto front. In these

cases where the assigned fitness was less than unity for one

or both of the constrained solutions, then the comparison

was performed in constraint space, rather than the intended

objective space. When the test was performed in constraint

space, the constraint aggregation method was to take the

Euclidean norm (L2 norm) of the constraint violation vector.

C. Test Objective Functions

For simplicity, the hypotheses were evaluated on two-

objective and 5 objective functions that are both constrained

highly. The 2D function is based on the Tanaka [7] objective

function, but with two additional constraints to further com-

press the feasible region. The objective function is defined

in equation 8 and is demonstrated graphically through a

random sample of the total objective space (objective space

and decision space are the same) in figure 6. The 5D function

in (9) is formed by constraint boundaries of a hypersphere

and a 15 degree cone.

F1 = x, F2 = y

0 ≥ −(x)2 −(y)2 + 1 + 0.1 cos

(

16 arctan

(

x

y

))

0.5 ≥ (x − 0.5)2 + (y − 0.5)2

0 ≤ x − y, 0 ≥ x − 2y, 0 ≤ x, y ≤ π (8)

Fi = xi, 0 ≤ xi ≤ 1

q =

5
∑

i=1

x2

i , q ≥ 1, cos(15◦) ≤

√

5

q

5
∑

i=1

xi (9)
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Random sample of feasible objective region

Fig. 6. Random sample of feasible objective region showing highly
constrained nature of 2D test function



D. Experimental Design

To enable statistical testing of the hypotheses, 100 repeated

trials of each algorithm configuration were performed. In

total 9 algorithm variants were evaluated:

1) Original MSOPS ranking, full set of target vectors (+);

2) New MSOPS ranking, full set of target vectors (◦);

3) Original ranking, automatic target vectors (△);

4) New ranking, automatic target vectors (♦);

5) Original ranking, restricted set of target vectors (�);

6) New ranking, restricted set of target vectors (⋆);

7) Random search of 5000 evaluations (equivalent pop of

50, 100 generations) (·)
8) Original ranking, full set of target vectors but no

Archive in crossover;

9) Original ranking, restricted set of target vectors but no

Archive in crossover.

The full set of vectors was spread over the total possible

objective region and suffers from the problem of many target

vectors not playing a significant role in the rank assignment

process (as shown in figure 2 for 2D problem). The restricted

set is targeted to just cover the feasible region of the objective

space (as shown in figure 7). Both vector sets use the origin

as the reference location. The experiments with automatic

target vector generation also generate the vector reference

point automatically (as shown in figure 5).
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Fig. 7. 50 Target vectors confined in a fan between vectors [2.1 1] and
[1 1.05]. The dashed lines show the direction of the target vectors, circles
represent the archive of non-dominated points, the dots are the locations of
the population members on the final generation.

E. Results and Discussion

1) Hypothesis 1: The hypothesis “The difference in be-

haviour between the original ranking method and the new an-

alytic fitness assignment process is insignificant” was tested

using the first 6 of the experimental algorithms to test the

hypothesis under the different possible algorithms conditions.

Figure 8 shows the results of hypervolume analysis (larger

is better) for the 2D problem, where the hypervolume of

the 100 trials have been sorted and plotted as a cumulative

distribution. It is clear that most of the distributions are

skewed and therefore the mean and variance of the results

will be unreliable with only 100 evaluations. The median

performance (which corresponds to the 50
th

point on the

horizontal axis) is the best general indicator.

A Wilcoxon rank-sum test was performed between all the

pairs and the null hypothesis that the distributions are the

same could not be accepted at a two-tailed test level of

α = 0.01. A Kruskall-Wallis test of the two triplets also

indicates that the null hypothesis that all three are the same

cannot be accepted in either case. However, the location

of the reference point is critical to the generation of the

plots and the order of algorithm performance changes as the

reference is moved away from the origin. It was decided that

the hypervolume measure performance is unreliable in this

instance and is not a good general indicator. Investigations

indicate that the problem lies with the fixed target vector

experiments being very good at finding the edges of the fea-

sible region and therefore gaining a high hypervolume score,

but not necessarily being as good in general at approaching

the true Pareto front.

0 20 40 60 80 100
0.039

0.0392

0.0394

0.0396

0.0398

0.04

0.0402

0.0404

0.0406

0.0408

0.041

CDF sample index

H
y
p
e
rv

o
lu

m
e

Hypervolume analysis

 

 

full orig

full new

auto orig

auto new

target orig

target new

Fig. 8. CDF Hypervolume results for first 6 experimental algorithms.
Reference point is set as nadir of all 600 non-dominated sets and lies at
[0.9242 0.7554]. Larger hypervolume is superior

An alternative metric was sought that would provide reli-

able results. The median Multi-Objective Equivalent Random

Search (MOERS) [8] was chosen as, like hypervolume, it

can capture the effects of spread, distribution and distance to

Pareto-front. In practice, the results have been repeatable and

are therefore considered more reliable. Figure 9 shows the

results of the median MOERS analysis for 200 test vectors

chosen at random from the non-dominated surface of a 108

point random search of the 2D objective function.

The MOERS results are shown on a logarithmic scale,

relative to the true 5000 point search used by all of the

algorithms. As confirmation of correct operation of the

metric, the random search results appear on the graph at a
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Fig. 9. CDF median MOERS results for first 7 experimental algorithms.
Graph shows Logarithm of the equivalent search ratio, i.e. referenced
directly to the median random search performance.

unity performance ratio, therefore being plotted around zero

on the logarithmic scale. All of the other algorithms tested

show a median performance of over 30 times better than the

random search.

A pairwise ranksum analysis of the median MOERS

results for the 2 objective problem show that the Null

Hypothesis that the results are from the same distribution

cannot be rejected for: 1:2 ρ = 0.0867; 3:4 ρ = 0.3531;

5:6 ρ = 0.1849, where ρ is the Wilcoxon test statistic. All

other pairs have ρ ≪ α = 0.01 and therefore we reject the

null hypothesis that the distribution are the same. Thus from

the median MOERS results, hypothesis 1 that the old and

new ranking methods have similar performance cannot be

rejected. For the 5 objective problem, similar results were

obtained.

2) Hypothesis 2: The hypothesis “With fixed vector sets,

performance is reduced when many target vectors do not

intercept the feasible objective region” is confirmed by the

Wilcoxon rank-sum test between pairs 1:5 and 2:6 returning

ρ ≪ 0.01, showing that under conditions where less than one

quarter of the target vectors pass through the feasible region

(as in figure 2), the null hypothesis of the distributions being

the same as for when the target vectors are matched closely

to the objective region (figure 7), must be rejected. Again

a similar result was observed with the 5 objective problem.

The MOERS results confirm that the set of vectors designed

to target the objective region yields superior performance.

3) Hypothesis 3: The hypothesis “Automatic target vector

generation is superior to a fixed target vector set that has

many target vectors which do not intercept the feasible

objective space” is confirmed by the Wilcoxon rank-sum test

between pairs 1:3 and 2:4 rejecting the null hypothesis at

ρ < 0.01 and the median MOERS results for the automatic

target vector generation process being superior. However,

it must also be noted that the test between pairs 3:5 and

4:6 also rejects the null hypothesis and the automatic vector

generation results are inferior to the fully targeted vector

set. Thus we can conclude that although automatic target

vector generation is useful for exploring unknown problems,

if the target vectors can be generated a-priori, then they

should. For the 5 objective problem, the performance of

the automatic target generation could not be distinguished

statistically from the targeted set (targeted formed a 17

degree cone encompassing the actual 15 degree cone of the

constrained region).

4) Hypothesis 4: The hypothesis “Choosing one parent

from an elite archive as part of the crossover operator is

superior to crossover just within the current population” was

tested by comparing algorithm pairs 1:8 and 5:9. In both

cases the null hypothesis that the performance is the same

could not be rejected with values of ρ = 0.60 and ρ =
0.72 respectively. Again similar results were observed for

the 5 objective problem. Therefore the use of the archive

over choosing a second parent from the working population

made no significant difference.

V. CONCLUSIONS

This paper has presented significant modifications to the

established MSOPS optimiser that allow a general-purpose

many-objective optimisation algorithm to be developed. The

functionality of the algorithm modifications have been tested

for statistical significance, allowing an informed algorithm

design to suit the degree of a-priori knowledge of the

optimisation problem.

Prototype algorithm software that will re-produce all of

the results in this paper is available for academic use at [9].
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