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Abstract. This paper introduces a real, unmodifiddny-Objectiveptimisation
problem for use in optimisation algorithm benchmarking. The radar waveform
design problem has 9 objectives and an integer decision space that can be scaled
from 4 to 12 decision variables. Proprietary radar waveform design software has
been encapsulated in a fast and portable form to facilitate research groups in
studying high-order optimisation of real engineering problems.

1 Introduction

Real engineering problems are often characterised by many objectives. Pareto ranking
has been exploited in recent years to develop a large number of excellent multi-objective
optimisation algorithms which can solve bi-objective optimisation problems effectively
and reliably, for example, NSGA-II [2]. However, it is known that Pareto ranking alone
does not scale well to problems with large numbers of objectives (4+ typically cause
problems) [9, 5]. Currently, there are few algorithms that are designed specifically to
tackle many-objective problems.

This paper describes a real, unmodified engineering problem and the software is
provided to allow optimisation with many-objectives to be studied, and hopefully effi-
cient optimisation algorithms developed.

The problem has 9 objectives, and from 4 to 12 integer decision variables, each
in the range [500,1500] inclusive, giving 1001 alleles per decision variable. It is known
that some of the objectives are not totally independent, and it is suspected that the Pareto
set is concave in places, with regions of low density.

The problem is the design of a waveform foPalsed Doppler Radartypical of
many airborne fighter radar systems. The radar system is required to measure both range
and velocity of targets. Unfortunately, with the very long ranges (100 nautical miles
typical) and very high velocities (Mach 5 possible), with a simple waveform it is only
possible to measure either: range unambiguously but ambiguous velocity; velocity un-
ambiguously but with the range ambiguous; or with both range and velocity ambiguous.
For example, if velocity is measured, then target range may only be known modulo by
say 5 kilometres, i.e. a target at 108km would appear at 3km.

To allow full unambiguous measurements, a set of simple waveforms is transmitted,
each subtly different from the last. The results of the multiple waveforms are then com-
bined in order to resolve the ambiguities. The problem is how to choose the set of simple



waveforms. Previous work in this area has led to the development of an evolutionary
algorithm capable of designing practical waveforms [1].

This radar waveform design problem is interesting in that in a practical radar system,
an entire set of non-dominated solutions would need to be created prior to each mission.
While the radar is active, it will choose a general location on the non-dominated sur-
face, based on current radar operating conditions, then select a waveform randomly
which is local to this chosen location. The random choice helps prevent 3rd-party in-
terception of the waveform as it is changing constantly, yet the waveform is biased
towards an optimal radar configuration. Thus the radar chooses its operating point on
the non-dominated surface dynamically on-line, from a non-dominated set that is likely
to remain fixed for each mission.

An initial analysis of the properties of the objective surface has been performed
and a demonstration of the typical behaviour of two different optimisation algorithms,
NSGA-II and MSOPS, on the function is presented.

Section 2 details the radar design problem and section 3 describes the format of the
objective function software. Section 4 introduces initial results from analysing the non-
dominated surface and section 5 describes the results of comparing the performance of
two example optimisation algorithms. Finally section 6 concludes.

2 Radar Waveform Design

2.1 Introduction

Radar systems are categorised by the rate at which they transmit pulses of energy toward
the target, called the Pulse Repetition FrequencPRF [10]. There are three broad
categories: Low PRF with few pulses (20 typical) and big gaps between them (1 milli-
second typical); High PRF with many pulses (thousands) and short gaps (few micro
seconds); and Medium PRF where there are a moderate number of pulses (64 typical)
and moderate gaps (16 typical).

Low PRF radar systems can measure range exactly, but velocity measurements are
ambiguous for any velocities greater than the maximum unambiguous velggtiy
given in (1) wheref+ is the pulse repetition frequency in Hertz axis the wavelength
of the transmitted pulses.

mu — (1)

The maximum unambiguous range of the radar is given by (2), wherd x 108 ms™!
is the speed of propagation of the pulse.
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Atypical Low PRF radar may have a PRF of 1kHz, yielding a maximum unambigu-
ous range ofRy,, = 150km and a maximum unambiguous velocitylgf, = 15ms™,
assuming a 10GHz transmission frequenty= ¢/ Frx, therefore\ = 0.03m).
The main advantage of low-PRF radar is the ability to measure target range directly
using simple pulse delay ranging. However, low-PRF radar suffers from a lack of ve-
locity visibility, since unwanted ground returns and undesired slow moving targets get



folded over and over into the small velocity window. Low-PRF radar is best suited to
operation in the absence of ground clutter returns, for example where a radar is looking
up at high-flying targets, rather than looking down and the radar beam is striking the
ground.

A typical High PRF radar may have a PRF of 100kHz, yielding a maximum un-
ambiguous range aR,, = 1.5km and a maximum unambiguous velocity @f, =
1500ms~*t, assuming a 10GHz transmission frequency.

The principle advantage of high-PRF radar, is the ability to detect high closing-rate
targets, in what is essentially a noise-limited environment. However, detection perfor-
mance is poor in tail aspect (low closing-rate) engagements, where targets compete di-
rectly with the velocity spectrum of the sidelobe clutter, where transmissions out of the
side of the antenna beam strike the ground and provide echoes back. Furthermore, the
highly ambiguous range response causes the sidelobe clutter to fold within the ambigu-
ous range interval. Consequently, sidelobe clutter can only be discarded by resolving
in velocity. High PRF radar is very good where small relative velocities are not often
seen, or when exceptionally good antennas are available that have very little spurious
radiation out of the side of the beam.

Medium-PRF radar is a compromise solution designed to overcome some of the
limitations of both low and high-PRF radar. By operating above the low-PRF region,
the ambiguous repetitions of the ground clutter spectrum may be sufficiently separated
without incurring unreasonable range ambiguities. Consequently, the radar is better able
to reject mainbeam clutter when in a look-down scenario through velocity filtering with-
out rejecting too many targets. By operating below the high-PRF region, the radar’s
ability to contend with sidelobe clutter in tail-chase engagements is improved. Targets
may now be extracted from sidelobe clutter using a combination of velocity filtering
and range gating.

For example, the mainbeam clutter may29ens—! wide, so can be ‘notched’ out
as long as/my > 20ms~t. However, if targets are folded in to the notched region, they
cannot be detected and the region is said tbllvel. When the pulse is transmitted, the
receiver is turned off to protect it and the ranges at multipleBroll are noweclipsed
and no targets may be detected here either. A second eclipsing region may also be
applied to help reject the effects of the sidelobe clutter from the ground. The region
will extend from a range that is just shorter than the aircrafts altitude (i.e. the first range
at which an echo from the ground could occur) to often a few kilometres ahead of the
altitude return.

A typical Medium PRF radar may have a PRF of 10kHz, yielding a maximum un-
ambiguous range ok, = 15km and a maximum unambiguous velocity gf, =
150ms~!, assuming a 10GHz transmission frequency. However, in many applications,
both range and velocity will now be ambiguous.

Medium PRF radars possess excellent clutter rejection characteristics which render
them an attractive proposition for airborne intercept (Al), fire control systems, ground
based air surveillance, weapon locating radar and a variety of other applications.



2.2 PREF Selection

Each PRF is characterised by regions of blind velocities and ranges associated with the
velocity filtering of mainbeam clutter and time gating of sidelobe clutter and associated
eclipsing losses. These blind zones are depicted in black on a blind zone map, as in
figures 1 & 2.
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Fig. 1. Blind zones for a single, clutter limited, medium PRF waveform with PRF 14.9kHz

Multiple bursts of pulses are required in order to perform target detection and to
resolve range and Doppler ambiguities. This is achieved by transmitting burst of pulses
at a number of PRFs within the dwell time on target and sequentially measuring and
comparing the ambiguous information received from every PRF. For example, eight
different PRFs may be used but must all be able to be transmitted sequentially within
the dwell time on the target, with each PRF burst having 64 processed pulses (64-point
Fast Fourier Transform (FFT)) and a short period of time in which to change over PRFs.
In practice, the change-over time is to allow the first pulse to reach, and return, from the
furthest possible target of interest. Thus extra pulses are transmitted in a process termed
Space ChargingFor example, if the maximum range was 185km, &g, = 15km,

13 extra pulses would be sent giving a total of 77, but only 64 would be processed,
making sure that 64 returns from both the closest and furthest targets were contained
within the processing window.

The positions of blind zones vary with PRF, therefore, by applying suitable PRFs
in a multiple-PRF detection scheme, not only may range and Doppler ambiguities be
resolved, but also the blind zones may be staggered to improve target visibility. Ground
clutter returns received through the antenna sidelobes may be strong enough to over-
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Fig. 2. Expanded view of Blind zones of Fig. 1

whelm weak target signals, consequently blind ranges tend to worsen with increasing
range, as shown in figure 3.
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Fig. 3. Comparison of target return and sidelobe clutter for a single, noise limited, medium PRF
waveform with PRF 14.9kHz



Conventionally, three PRFs are required to be clear in range and Doppler in order
to resolve range and Doppler ambiguities and to declare a target detection.

The number of PRFs within a schedule must be selected carefully; too few and the
ability to overcome range-velocity blind zones will be hindered. With too many PRFs,
then, depending on the average PRF, there may be insufficient time to transmit the
entire PRF schedule within the dwell time on target. Typically, eight PRFs are employed
spanning about an octave.

If significant harmonic relationships exist between any of the PRFs chosen, then it
may not be possible to resolve all of the ambiguities and the schedule deoot-
able In reality, targets have a physical size too and extend outside of individual range
or velocity cells. It is desirable to make sure that a schedule is not only technically
decodable, but also decodable in the presence of range or velocity extended targets. If
the decodability criteria is broken by a large target, then false targefisastswill be
observed. Unfortunately there is no means of distinguishing a ghost target from a real
target and so all must be processed as true detections, leading to false alarms.

Because of the relatively wide size of the rejection notches, the possibility remains
for a PRF schedule to be decodable and still have some rejection notch overlap; this
is found to be a particular problem at the first repetitions of the ambiguous velocity
intervals. The consequences of such occurrences are bands of velocities in which the
radar is blind, or nearly blind (three PRFs clear only)alhtranges, thereby allowing
a target to approach at a particular velocity with minimum risk of detection. Nothing
can be done about the rejection notches, centred on zero Hz, which blind the radar to
crossing targets.

After the pulses have been received by the radar, they are decoded using the coin-
cidence algorithm [8]. The coincidence algorithm operates by taking the target returns
and for each range bin, performing an FFT across all pulses in the PRF. Thus a map
of range-velocity is produced. The regions of heavy clutter are then notched out and a
detection algorithm is then used to identify potential targets within this ‘folded’ (am-
biguous) range-velocity map. The process is repeated for each of the PRFs.

The next stage is to decode the targets and resolve the ambiguities. This is per-
formed by taking each range-velocity map and repeating them until the maximum
range-velocity extent of interest has been covered. For a single PRF, this will give many
ranges and velocities at which a target may be present. The process is repeated for all
the PRFs and the results overlaid. If a true target is present, it will appear in the same
position in all PRIs (yet may not be detected, or may have been eclipsed or notched
out). Any region of the range-velocity map that has 3 or more coincident detections is
declared as being a true target. The process works well but issues can arise where very
fast targets have moved between range cells between the first and last PRF being trans-
mitted and do not necessarily align in the coincidence process. The problem is known
asrange-walkand is accounted for in the software.

In the radar problem encapsulated for this paper, the length of the transmitted pulse
is directly proportional to the delay before the next pulse. This keeps the duty cycle of
the transmitter constant. The radar is also frequency-hopping in that the transmission
frequency changes for each PRF. The result is that the wavelength will also change and
so the order of transmission for the PRFs is important.



The selection of PRFs in a medium PRF set is therefore based on the following
constraints:

1. A spread of values which enable the resolution of range and velocity ambiguities
to ensure basic decodability,

2. Removal of totally blind ranges and velocities,

3. The total time required for transmission of the waveform must be within the target
dwell time.

The objectives then become:

[N

. Maximise the size of the target in range that can be decoded without ghosting,

. Maximise the size of the target in velocity that can be decoded without ghosting,

3. Maximise the size of the clutter patch in range that can be tolerated before blind
ranges occur,

4. Maximise the size of the clutter patch in velocity that can be tolerated before blind
velocities occur,

5. Minimise the total time required for transmission of the waveform.

N

Obijectives 1 to 4 may be calculated using the process outlined in [7] by calculating
what is the target extent at any range/ velocity that can be tolerated before problems
arise. If any of the objectives are zero or negative, i.e. a negative target size is the
maximum that can be tolerated, then it implies that one of the constraints has been
violated.
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For the practical radar design in section 2.3, as each range and velocity has an
associated minimum target size as demonstrated in figure 4, the worst case and median
performance are actually of interest. The result is that for objectives 1 to 4, both the
median overall performance and minimum overall performance need to be maximised,
yielding 9 objectives in total. The constraints can be applied easily in objective space
after the optimisation process. For the PRI[5681850.055.664.086.270.167.496.8] s
results shown figure 4, the corresponding objectives are:

1. Median range decodability: 2205.0 metres,
2. Median velocity decodability: 47871,

3. Median range blindness: 5310.0 metres,
4. Median velocity blindness: 13551,

5. Minimum range decodability: 405.0 metres,
6. Minimum velocity decodability: 12:89.s~1,

7. Minimum range blindness: 1848.0 metres,
8. Minimum velocity blindness: 69851,

9. Dwell time: 44 .8ms.

As objectives 1 to 8 are positive, and objective 9 is less than 50ms, the PRI set
shown will form a viable radar waveform.

2.3 The Radar Model

A radar model based on an airborne fire control type application was derived to trial the
fithess of PRF sets. The model assumes approximately 10GHz operation, 64-point FFT
processing, 10% fixed duty ratio of pulse length to Pulse-Repetition Interval (PRI), lin-
ear FM pulse compression achieving a variable compression ratio with the PRF and that
platform motion compensation is applied (i.e. the location of the ground is shifted in
velocity back to zero, rather than being left at the platforms forward speed). The maxi-
mum target velocity with respect to the ground was taken as 1500 m/s and the maximum
range was taken to be 185 km (100 nmi). These and other operational characteristics
are summarised in Table 1. It is intended that the model should be representative of the
types currently in service or about to enter service.

3 Software Structure

The software for the radar design problem is available for download from [3]. As the
exact design analysis algorithms are proprietary, the software source is not provided,
rather a compiled but portable binary file. In the interest of maximising portability be-
tween platform types, and simultaneously protecting the proprietary algorithms, Matlab
P-code format has been used. MatRizode is a platform independent pre-parsed bi-
nary format used by the Matlab engine, helping to reduce the options for de-compilation
that ‘C’, Fortran or Java would present.

The functiontestpris.p takes al x N vector as an input, wher® € [4,12]
is the number of decision variables, and outputs:a9 vector of metrics. Each of the



Table 1. Summary of the radar model’s characteristics

Parameter Value

Carrier frequency 9.97 GHz fdP RF?, each following PRF -30MHz
Minimum PRI 50us

Maximum PRI 15Qus

Compressed pulsewidth o5

Receiver recovery time 10s

Range resolution 75m

FFT size 64 bins

Duty cycle 10% fixed

Maximum target dwell time 50ms

Maximum target Velocity +1500ms "
Maximum detection range 185.2 km (100 nmi)
Number of PRFs/PRIs 4t012

Number of PRFs for coincidence 3

decision variables is an integer in the range [500,1500] inclusive and represents the set
of Pulse Repetition Interval values betwd&0.0.:s, 150.0us] in steps 0f0.1us.
The 9 metrics that are output represent:

. Median range extent of target before schedule is not decodable (in metres),

. Median velocity extent of target before schedule is not decodabla{in'),

. Median range extent of target before schedule has blind regions (in metres),

. Median velocity extent of target before schedule has blind regions{m'),

. Minimum range extent of target before schedule is not decodable (in metres),
. Minimum velocity extent of target before schedule is not decodablgén'),

. Minimum range extent of target before schedule has blind regions (in metres),
. Minimum velocity extent of target before schedule has blind regions:@n?),

. Time required to transmit total waveform (in milliseconds, tatiaimised)

O©CoO~NOoOOTh,WNPE

The metrics 1 to 8 are to be maximised, while metric 9 is to be minimised. There are
9 corresponding constraints: the first eight metrics must all be greater than zero, and the
9" metric must be less than 50 ms. In order to simplify the conversion of the objectives
all to minimisation, and to simplify the constraint process, a wrapper function has been
providedobjpri.m  that will allow a P x N matrix to be provided, and B x 9 matrix
is returned with all of the metrics arranged for minimisation, and aligned so that if any
are greater than zero (the maximisation is converted to a minimisation by negating),
then the solution can be considered not feasible as a practical waveform. The function
also allows an entire population (siZe in the example above) to be passed as one
matrix.

The current version of the MSOPS [4] optimisation algorithm code used to generate
the results found later in this paper is also provided as an example of how the objective
function may be implemented.

The run-time of the objective function is quite short, considering it is an un-modified
engineering application. Under Matlab and on a 1.8GHz Pentium 4 processor, Microsoft
Windows XP, table 2 indicates the observed processing times for 10000 evaluations, and
therefore times for single objective vector calculations.



Table 2. Example processing times for objective vector calculation

N Time 10000 eval (sec) Time 1 eval (ms)
4 21.6 2.16ms
8 33.6 3.36ms
12 46.4 4.64ms

4 Initial Objective Surface Analysis

The objective surface consists of 9 objectives and from 4 to 12 decision variables. Some
relationships are known to exist between pairs of objectives, and also between the chro-
mosomes and objectives.

The first main relationship is that if the number of decision variables is less than 9,
then the objective region must be a projection of the lower-dimensional decision space
manifold into the 9-objective space: thus not every possible objective vector is defined.
With greater than 9 decision variables, the converse is true and there is likely to exist ex-
tensive many-to-one mappings between decision space and objective space. At present,
it is not clear if one particular choice of decision space dimensionality provides the en-
tire Pareto surface of the problem. It is hypothesised however that this is not the case
and that the full Pareto surface will be comprised of sections where the decision space
dimensionality changes. From a radar design perspective, the number of PRFs used and
therefore the decision space dimensionality are not critical, as long as the schedule is
valid and performs well. Short schedules are often attractive as they tend to require less
processing time, although this processing aspect is a design preference rather than an
objective, and is useful for refining the choice of PRF schedule from the full Pareto set.

The second relationship is that the first 4 objectives are median values, and objec-
tives 5-to-8 are the minimum values, of the same 4 data sets. Thus objective 1 will
always be better than (or equal to) objective 5 etc. Objectives 1 & 3, 5 & 7 are metrics
associated with the performance in range and tend to have a degree of correlation, i.e.
they may not conflict strongly. Similarly, Objectives 2 & 4, 6 & 7 are metrics associated
with the performance in velocity and again do not tend to conflict strongly with each
other either, however they do conflict with the objectives associated with range.

The third relationship is between the decision variables and the dwell time (objec-
tive 9). The objective is calculated from equation 3, whBséx) is objective 9x is the
decision vector (which is integers in units@®@f i:s) and|-] is a rounding-up operation.

The first part of the sum accounts for the time to transmit 64 pulses for the FFT. The
second part of the sum calculates how many pulses are required to space-charge to the
maximum range of intereRRnax. The objective has a nearly linear relationship, apart
from the quantised space-charge offset. Interestingly, the order of the decision variables
also has no influence on the objective, implying that it is therefore approximately uni-
modal (i.e. no local optima), but multi-global (i.e. more than one global optima exist).
At first sight, the minimum value appears to occur when all of the decision variables
are at their minimum, i.e. for an 8 PRI system, the minimum total dwell time would be
35.6ms, giving an objective value of -14.4. However, if unambiguous range of the min-
imum possible PRI is not an integer fraction of the maximum range, then the constant
space-charge term may be rounded up. It may therefore be possible that under some



conditions, the global optima may not quite occur when all the decision variables are at
their minimum values.
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Similarly a fourth observation can be made that the velocity-related objectiees
dependent on the order of the decision variables (i.e. if the elements of a decision
vector are re-ordered, the objective values may change). This coupling is due to the
frequency-hopping radar design: the target velocity produ@spgpler shiftof the car-
rier frequency; the shift amount is dependent on the carrier frequency itself. As the first
PRI described by the first decision variable is transmitted at 9.97GHz, the second at
9.94Ghz etc., the order of the decision variables will change the effective transmission
frequency, and therefore the velocity performance of the waveform. The objectives that
are associated with range however are only very weakly correlated to the decision vari-
able ordering. The modification of the objective value that occurs with a re-order is due
to the effects of target range-walk. Given that a relatively large range resolution of 75
metres is used in this design, in a dwell of 50 milliseconds, a target must be travelling
at1500ms~! or faster in order to move range cells during the dwell. The effect is thus
only very small in this example as only targets at the limit of the velocity of interest
will be affected. Objectives 1 & 3 are the most likely to undergo any change as these
are calculated based on the medians. Objectives 5 & 7 are calculated using minimum
and although possible, it is unlikely that any order-dependence will be observed.

The number of decision variables influences both performance, and also ultimately
which constraints are most difficult to satisfy.

5 Algorithm Comparison

An initial examination of the ability of multi-objective optimisers to explore the ob-
jective surface was performed. Two primary optimisers: NSGA-Il and MSOPS were
used, along with a 3rd which is a steady-state derivative of the MSOPS algorithm and is
currently under development (unpublished prototype which is run in a ‘Pareto ranking
mode’ to aid confirmation of NSGA-II results). The experiments were to generate non-
dominated surfaces for the application problem using 8 decision variables. Although
NSGA-II is known to be less suitable for many-objective problems when compared to
bi-objective problems, it has been included as a useful reference algorithm.

Each optimiser was run 30 times for 20,000 function evaluations. In each run of each
optimiser, all 20,000 points that were generated were collected and the non-dominated
surface of these points established, rather than relying on the contents of the final pop-
ulation alone e.g. as is common in NSGA-II.

The non-dominated surfaces of the 90 independent experiments were collated into
a single group consisting of 775,140 points. Initially, an attempt was made to create the
composite non-dominated surface to establish the contribution from each algorithm.
However after over 24 hours of processing, the non-dominated set was still incomplete,
but it was clear that all of the runs of all of the algorithms made a significant contribution



to the surface — in the high dimensionality of the objective space, the proportion of non-
dominated solutions is very large. The group of 775,140 points was used to establish a
lower-bound reference point, and a range for each of the objectives for scaling purposes.

The lower reference used was: [-7035.0 -81.3-27150.0 -296.9 -2700.0 -22.3 -7660.5
-100.5 -14.4]. The range of each objective was calculated as: [7110.0 84.7 23130.0
249.5 2775.0 27.0 10511.0 100.3 78.0]. Figure 5 shows a plot of 5000 example non-
dominated points, and figure 6 shows the same points, but normalised. It is clear that
the relationship between the objectives is non-trivial
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Fig. 5. Plot of 5000 non-dominated objective vectors. Objectives are un-normalised

A 10 million-point random search was performed of the objective function in or-
der to help establish the relative performance of each of the algorithms. Unfortunately,
every one of the 90 EA runs entirely outperformed the 10 million-point random search,
preventing useful normalisation by exploiting the cumulative density function of the
aggregated objectives [6].

Figure 7 shows an approximation of the distribution of the median attainment sur-
face of the 3 algorithms over the 30 runs. Each of the 3 lines of the graph is calculated
by:

1. Generate 200 approximately uniformly distributed unit length target vectors over
the entire objective space.

2. For each of the 200 target vectors in turn, calculate the weighted min-max result for
all the points in each of the 30 sets of repeated experiments. The minimum value in
each of the 30 sets is taken, yielding a 30 by 200 matrix for each of the 3 algorithms.
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3. The median of each column of this matrix is taken, creating a 200 element vector
for each algorithm tested: the vector is a sampled approximation of the median
attainment surface.

4. Each of the 200 element vectors is sorted to build a cumulative distribution, and
then plotted.

As a 200 point sample of a 9-dimensional objective space is very sparse, the process
was repeated 10 times, each with a different set of 200 points. The results were used
to create 95% confidence interval bounds and plotted as dotted lines on figure 7, with
the median of the 10 results as the thick-line. It is clear that despite 200 points being a
sparse sample, the results are reassuringly accurate.

The performance of the three algorithms is very similar, with MSOPS leading slightly
everywhere, as anticipated from previous studies [5]. As all 3 algorithms have produced
similar results, despite entirely independent trials and algorithms, it is hypothesised that
the obtained non-dominated sets are quite close to the Pareto optimal solution, but as
the difference between MSOPS and NSGA-II shows, the set can only be considered
non-dominated rather than Pareto. Additionally, as this is a 9-objective problem and
NSGA-II has performed reasonably well with 20,000 evaluations, it is suspected that
the overall density over the majority of the Pareto surface is high, allowing the problem
to be approximated very well within 20,000 evaluations. However some of the results
from the MSOPS trials suggest that there are regions of low density (the weighted min-
max metric can converge well, however the Vector-Angle Distance Scaling metric is
poor, suggesting a low density of points). Thus it is anticipated that the objective may
be viable for study where only very few function evaluations are available (typical for
on-line optimisation within a radar system).

It has been observed that there are concavities in certain dimensions (e.g. between
objectives 1 & 2), and it may be the edges of the set that are sparse. Early indications
from analysis using MSOPS also suggests that there may be regions of discontinuities
and possibly sections of disconnected objective space.

6 Conclusions

This paper has presented and described a real engineering application of many-objective
optimisation, and also provided access to software that allows the application to be
studied by other researchers in the field.

The objectives can be calculated quickly enough to allow for practical optimisation
algorithm development, and the surface appears complex enough to test the perfor-
mance of visualisation and surface analysis tools.

At times, industrial acceptance of multi and many-objective optimisation algorithms
has been slow. It is hoped that by providing an un-simplified real-world problem to use
as an empirical benchmark, others can be encouraged to do the same for other problems,
allowing more credibility to be attached to optimisation algorithm performance.

| also hope that as researchers in the field develop better algorithms for many-
objective optimisation, the results can be collated and the true Pareto set for this op-
timisation problem approached. This collected set would be made available to extend
the non-dominated data already provided from the production of this paper.
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