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Abstract

A method based on optimising the ambiguity diagram is
described for the design of very short pulsed radar wave-
forms that still allow both target range and velocity to be
measured. The coherent processing interval of the wave-
form is comprised of a sequence of modulated pulses whose
inter-pulse timings and transmission frequencies are chosen
independently for optimal performance. When optimised,
the waveform structure allows measurement of both target
range and velocity whilst maintaining good target visibility
at all ranges/velocities. The optimisation process has been
conducted using an evolutionary algorithm. The waveforms
derived here demonstrate an interesting alternative to con-
ventional low, medium or high pulse repetition frequency
processing for situations such as in electronically scanned
array antennas where short dwell times are often necessary.

1 Introduction

With modern electronically steered phased array radar sys-
tems, there is often a significant restriction on the avail-
able dwell period for each waveform as a very large vol-
ume of space is being scanned using a narrow pencil-beam
antenna pattern. The requirement to detect high velocity
targets at long ranges leads to a conflict of design choice
for the waveform timings as a High Pulse Repetition Fre-
quency (HPRF) is needed in order to measure velocity un-
ambiguously, whereas a Low Pulse Repetition Frequency
(LPRF) is needed in order to determine the unambiguous
range. There is no single PRF choice that allows both target
range and velocity to be measured unambiguously within a
single dwell period. The compromise choice is to transmit a
sequence of shorter pulse bursts, each at a different PRF in
order to allow the ambiguities to be resolved. As multiple
bursts must be transmitted within the total allowable dwell
period, each of the bursts is therefore compromised on the
maximum possible Coherent Processing Interval (CPI) and
the number of pulses that can be integrated to improve the
total energy on the target and therefore detection range.

In the field of pulsed radar waveforms, the pulse repetition
frequency (PRF) falls into three regimes [1, 2]:
Low PRF. These are sufficiently low to avoid range ambigu-
ities, however, velocity data is likely to be highly ambigu-
ous. Low PRF affords very little ability to reject clutter,
particularly from fast moving platforms since main beam
clutter (MBC) and its ambiguous repetitions in the Doppler
domain overwhelm returns at all Doppler frequencies.
High PRF. A high PRF waveform is one which is suffi-
ciently high so as to avoid Doppler ambiguities, however
range data is likely to be highly ambiguous. HPRF can
reject MBC well but suffers from side lobe clutter (SLC)
which becomes spread between ±VP , where VP is the
ground speed of the platform. Consequently, HPRF is ide-
ally suited to velocity measurement applications. Since also
a large number of pulse returns may be received in each co-
herent processing interval (CPI), large processing gains are
possible leading to good long range detection performance.
Medium PRF. Medium PRF is ambiguous in both range and
Doppler. MPRF is seen as a compromise between high and
low PRF since it avoids the severe problems of MBC expe-
rienced by LPRF and the SLC related problems of HPRF.
Medium PRF subdivides the beam dwell time into several
CPIs (typically 6 to 8); each transmitting a different PRF,
in order to decode the true range and velocity of targets and
to ensure all round target visibility in conditions of clutter.
In order to accommodate multiple CPIs, each CPI duration
must be limited which, in turn, leads to more modest pro-
cessing gains and detection ranges.
One possible solution to the problem of measuring both
range and velocity unambiguously in a single dwell is to
allow the spacing between each of the pulses to be chosen
independently, allowing far more flexibility in the proper-
ties of the final waveform. The velocity processing can be
performed using a sparse Discrete Fourier Transform (DFT)
process which can be made tolerant of the arbitrarily cho-
sen pulse timings. For an ideal waveform, the ambiguity
diagram [3, Chapter 6] structure would approach a single
central spike, surrounded by a low plateau.
Previous work on studying the benefits of using arbitrar-
ily spaced pulse trains for performing measurement in both
range and velocity [4] demonstrated that, for small num-



bers of pulses (< 10) it is possible to use optimisation pro-
cedures that use an ambiguity diagram of the waveform in
order to produce waveform timings that have a useful de-
gree of unambiguous visibility in both range and velocity
simultaneously. The previous work studied a simple wave-
form structure where small numbers of pulses were used
and every pulse had the same modulation characteristics
and a consistent transmission frequency. Alternative ‘clas-
sical’ design approaches were compared to waveforms that
were optimised and it was determined that the use of op-
timisation tools can indeed produce useful waveform tim-
ings. The previous work indicated that the issue of pulse
eclipsing is often in conflict with the requirements of low-
ambiguity range and velocity performance however, and if
many more pulses are to be packed into a short dwell, the
issues of minimising eclipsing whilst also optimising the
ambiguity function need to be addressed.
This paper extends the previous technique significantly by
considering the transmission of Linear Frequency Modu-
lated (LFM) pulses that are offset in frequency to allow the
effects of eclipsing to be partially decoupled from the range
and velocity ambiguity diagram. The dwell times consid-
ered are also much shorter and the number of pulses em-
ployed much larger. The resulting optimisation problem is
far more difficult and so evolutionary optimisation methods
have again been applied to attempt to produce waveforms
with a ‘thumb-tack’ like behaviour.
Section 2 describes the structure of the waveforms that are
being optimised and the methods of processing for extract-
ing target returns, Section 3 describes the optimisation pro-
cess and Section 4 shows example performance results of
an optimised waveform. Finally Section 5 concludes.

Figure 1: Waveform timings for envelope of transmitted
pulses

2 Waveform Structure

The design aim is to derive waveforms which yield an ambi-
guity diagram as close to the ideal as possible, whilst trad-
ing ambiguities against eclipsing losses. A general pulse
sequence of N pulses is illustrated in Figure 1, in which
the pulse widths are τ1, τ2, . . . τN , the Pulse Intervals (PI)
between the pulses are T1, T2, . . . TN and the start times
of the rising edges of the pulses are t1, t2,. . . tN . The first
pulse is always taken to start at zero time (t1 = 0). The
optimisation process also allows the total dwell time to be
fixed as T .
The individual PIs may be chosen to be ambiguous in range
or velocity, however to guarantee that the furthest target of
interest has been illuminated by all of the pulses, the last PI
of the pulse sequence determines the maximum unambigu-

ous range as shown in (1), where c = 3 × 108m−s is the
speed of propagation.

Rmu =
c(τN + TN )

2
(1)

The pulse start time of pulse k may be determined as in (2),
where the timing of the first pulse is t1 = 0.

tk =
k−1∑
i=1

(τi + Ti) (2)

For this study, each of the pulses is modulated with a section
of a long Linear Frequency Modulated (LFM) Chirp signal.
The long chirp will generally be equivalent to 3 to 10 times
the length of the longest transmitted pulse and is therefore
never transmitted in its entirety. The section of the long
chirp used to modulate each pulse is intended to be different
to allow extra degrees of freedom to the optimisation pro-
cess. The optimisation process can therefore select the start
time and essentially the centre frequency of each chirped
pulse. On reception, the received short pulses are com-
pressed (i.e. cross-correlated) using the full long LFM chirp
characteristics, rather than each of the individual short chirp
sweeps. The result is a cross-correlation of the full long
chirp sweep with each of the individual short pulse sweep
returns. The resulting cross correlation profiles have inter-
esting properties in that the central compression peak may
appear offset in time and phase when compared to the ac-
tual transmission time (and phase) of each pulse. The pulse
compression can be performed easily using a padded Fast
Fourier Transform (FFT) process. If the zero padding of the
reference long chirp and received signal is chosen carefully,
an apparent shift in the pulse positioning can be created by
inducing artificial range-Doppler coupling effects from the
transmission of a range of LFM chirp sections.

∆R =
c

2B
(3)

Figure 2 shows an enlarged view of an example pulse after
compression. As the central section of the reference chirp
was not used, the resulting compression peak is offset in
time. The time-sidelobes are visible clearly and have been
reduced from the usual sinc pattern by the application of a
Hamming window envelope to the transmitted chirps.
For example if the long reference chirp has a total band-
width of B=20MHz and pulses of τ = 10µs are transmitted
with a bandwidth of 7.5MHz (using (3) gives a range reso-
lution ∆R = 20m), the reference chirp has the same sweep
rate as the shorter transmitted chirp and so would have an
equivalent length of Tc = 26.7µs if it was ever transmitted.
After cross correlation, the correlation profile will have a
total width of (10 + 26.7)µs and the location of the central
spike will be dependent on what the centre frequency of the
transmitted chirp was. Figure 3 shows a diagram of the zero
padding needed in order to allow FFT based pulse compres-
sion using the received signal of length T and the theoret-
ical reference long chirp with the same sweep rate as the
transmitted pulses which would have an equivalent length
of Tc. The compression process is performed via FFT as
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Figure 2: Enlarged view of a pulse after pulse compression.
The shift in the location of the pulse compression peak is
clear, along with the pulse compression artefacts which now
occupy a time period of τi + Tc.

detailed in (4), where SRx(t) denotes the received complex
samples at time t (down converted to baseband), C∗

ref (t)
denotes the complex conjugate of the long reference chirp
waveform (baseband definition prior to multiplication with
carrier) defined in (5) and Sc(t) denotes the complex pulse-
compressed received waveform.

Figure 3: Zero padding of waveforms to be cross correlated
using a FFT. The upper trace shows the reference chirp of
theoretical length Tc which is post-padded with zeros of
length T (the waveform length in Fig. 1). The lower trace
shows the received signal of length T that is pre-padded
with a section of zeros of length Tc. Note that the shading
of the pulses in the lower trace indicate that they are from
different sub-sections of the larger chirp in the upper trace.

Sc(t) = IFFT{FFT(C∗
ref (t))× FFT(SRx(t))} (4)

Cref (t) = exp

(
j2πt

(
Bt

2Tc
+

B

2

))
(5)

In practice the pulse compression process is performed on
sampled data. The received signal must be sampled at a
rate commensurate with the total bandwidth of the refer-
ence chirp (signal is complex so sampling at the bandwidth
provides sufficient total samples to satisfy the Nyquist cri-
terion). Thus in the previous example, the received data
would be sampled at B = 20MHz, i.e. the sampling will
lead to the reference chirp consisting of Nc = B×Tc sam-
ples. After pulse compression, if the zero padding strategy
in Figure 3 is used, the sample indices ik of the peak of the
kth pulse compressed return is given by (6), where δk is
the time offset from the start of the reference chirp for the
section of the reference chirp that was actually transmitted.

Figure 4: Behaviour of a target return when observed with
an arbitrary waveform. At each time offset tr, the DFT
process only needs to consider the N received cells corre-
sponding to the transmitted pulses.

In practice, δk is chosen in the range δk ∈ [0, Tc − τk] to
ensure that an entire chirp segment is captured.

ik = B(tk + (Tc − δk)) (6)

2.1 Sparse DFT processing

Target extraction is performed by correlating the transmit-
ted pulse train with the received echo data at each possible
range offset of interest as shown in Figure 4. As pulse com-
pression has been applied first, the targets are well isolated,
reducing the processing required for the pulse-train correla-
tion step as only the range-bins where pulses are expected
need to be included in the correlation process. For each
range offset, all Doppler phase profiles for the velocity span
of interest are correlated, allowing a range-velocity map to
be constructed.
The process segments copies of the received data by offset-
ting by each of the pulse start times (modified by the com-
pression process) and stacks them, allowing all the range
cells to be identified and processed as a block (similar to
figure 5). The DFT process of pulse-compressed returns
may be described as in (7), where rR,v is the magnitude of
the complex DFT correlation output at range R and veloc-
ity V . Note that (7) copes with unequal time sampling, as
opposed to standard DFT techniques which assume a fixed
pulse repetition interval.

rR,v =

∣∣∣∣∣
N∑

k=1

Sc

(
tk + (Tc−δk) +

2R

c

)
exp

(
−j4πv

c

)∣∣∣∣∣
(7)

The segmentation of the pulse compression waveform in-
troduces an effective time offset into the location of the
compression peak which persists into the processing of the
DFT. Thus the location of the compression peak is con-
trolled not only by the pulse start time, but also by the
choice of chirp segment offset time.

2.2 Eclipsing

The number of pulses eclipsed at any range R may be cal-
culated as in (8), where nR is the number of pulses eclipsed
at range R, tm and tk are pulse transmission start times
of the N pulses, τk is the length of pulse k and c is the
speed of propagation. The summations are a summation of
Boolean values, given the logical outcome of the inner ex-
pression. The summation process is shown graphically in



Figure 5: Separating pulse train into individual fragments
for each transmitted pulse envelope in order to establish
overall eclipsing profile.

Figure 5. The locations of regions of eclipsing are governed
only by the start times and lengths of pulses; by allowing
the choice of chirp fragment frequency in transmission, the
performance of the DFT process may be almost completely
decoupled from the issues of eclipsing.

nR =
N−1∑
k=1

N∑
m=k

(
(tm−tk) ≤

2R

c
≤ (tm−tk+τk)

)
(8)

3 Optimisation Procedure
Evolutionary Algorithms (EAs) are optimisers which use
an approach inspired by the natural phenomenon of biolog-
ical evolution [5] and directly exploit the Darwinian con-
cept of ‘survival of the fittest’ where the best specimens
of a species live long and produce many offspring while
the weaker members of the population die young and have
few or no offspring. Successive generations tend to become
dominated by the best features from previous generations.
In the context of mathematical optimisation, each member
of a population is a potential solution to the optimisation
problem, which in this paper is a waveform structure. The
‘fitness’ (quality) of each population member is measured
by an ‘objective function’, which in this paper is to min-
imise the velocity and range ambiguity of the waveform
whilst also limiting the effects of range eclipsing.
EA optimisation is an iterative process with each itera-
tion representing one ‘generation’. Each generation should
comprise members that are generally fitter than their pre-
decessors as a result of selective breeding and replacement.
As the population becomes fitter as a whole, the individual
members will begin to appear very similar to one another
until the population eventually converges to an optimal so-
lution. We found that the best results were obtained using
an ‘Evolutionary Programme’ (EP) [5]. In the terminol-
ogy of the EP, each population member is called a ‘chro-
mosome’ which comprises a number of individual ‘genes’.
In this paper, a chromosome represents the PI sequence and
chirp offsets of a transmitted waveform. The optimisation
process performed by the EP is:
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Figure 6: Amplitude profile of optimised schedule.

1. Generate an initial population of random chromo-
somes,

2. evaluate the fitness of each member of the population,
3. select a subset of the population to be allowed to ‘re-

produce’,
4. combine the selected subset of ‘parents’ into ‘off-

spring’,
5. introduce some ‘mutations’ (changes) into the new off-

spring,
6. select the best P solutions from the sorted set of the

parents and offspring.
7. repeat from step 2 for a given number of generations.

For simplicity, the transmitted pulse lengths, τ , have been
kept constant and therefore the chromosome structure used
in this paper consists of two sections. The first section has
N−1 timing genes, each gene being in the range gt(i) ∈
[0, 1] and the pulse start times are established using (9)
and (2). The last interval, TN , is set by the required un-
ambiguous range and so is not encoded in the chromosome.

Ti =
gt(i)∑N−1

m=1 gt(m)

(
T − 2Rmu

c
−

N∑
k=1

τk

)
(9)

The second section of the chromosome consists of chirp
genes, gc(i), and the chirp section used for transmission,
Ci(t), at pulse i is given in (10) and t = 0 . . . τi is used to
create the chirp.

Ci(t) = exp

(
j2πt

(
Bt

2Tc
+ gc(i)(Tc−τi)

))
(10)

The total chromosome structure is therefore 2N−1 real-
valued genes. The pulse start timings and chirp offset tim-
ings are quantised to the sample resolution defined by the
chirp bandwidth B before the waveform is analysed. To re-
duce the effects of spectral spreading during pulse compres-
sion, each of the transmitted chirps is amplitude weighted
using a Hamming window [3].
The evolutionary programme used a working population of
20 chromosomes and ran for 500 generations. The off-
spring were created by creating a copy of each parent chro-
mosome in turn and then crossing over 70% of the genes
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Figure 7: Eclipsing profile of optimised waveform.

with genes from another chromosome chosen at random
from the parent population; which genes were swapped was
chosen at random. The offspring chromosome was then al-
tered through mutation where 90% of the gene values were
perturbed by a small random value which was generated
from a Gaussian distribution. The EP was run multiple
times and although on each run the solutions differed (sug-
gesting the results are good local optima and not necessarily
the global-optimum solution), they were of similar perfor-
mance.

4 Example Optimised Waveform

4.1 10GHz 10ms Dwell, 32 Pulses

The evolutionary process was set to search for waveforms
for a radar with a carrier of 10GHz, Rmu=200km, range
resolution of 20m, 32 transmitted pulses all with lengths
of τ = 10µs, total dwell of 10ms and a velocity space of
interest of ±1500ms−1. The structure of the waveform has
an average duty cycle of 3.2%.
The waveforms have all been assessed based on the pattern
of eclipsing in range and the overall range-velocity ambi-
guity diagram. If DFT processing is applied as in (7), the
ambiguity diagram may be formed as the product of the
magnitude of the DFT profile in range for a zero velocity
target, multiplied by the magnitude of the DFT profile in
velocity for a zero range target. The resulting matrix may
now be scaled by the maximum peak value in the matrix
(i.e. the central peak) and provides the ambiguity diagram.
For clarity, the range and velocity slices are presented.
Figure 6 shows the amplitude profile of an example opti-
mised waveform. It is clear that the pulse intervals are non-
uniform, helping to prevent ambiguities in the range and
Doppler processing. Figure 7 shows the eclipsing profile of
the optimised waveform. At time zero, all of the pulses have
a presence hence there are all 32 pulses visible as overlap-
ping to the left of the figure. The number of pulses eclipsed
at any one range varies with time over the full Rmu of in-
terest but the maximum level has been minimised by the
evolutionary algorithm. Figure 8 shows the range profile
of the ambiguity function, plotted on a logarithmic vertical
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Figure 8: Range ambiguity profile of optimised waveform
(vertical scale in dB).
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Figure 9: Velocity ambiguity profile of optimised waveform
(vertical scale in dB)

axis. The profile has the main correlation peak at 0dB on
the far left of the figure, falling rapidly as range advances.
Overall the ambiguity profile shows a good separation be-
tween the target detections and the time-sidelobe artefacts
of the pulses in the waveform.
Figure 9 shows one side of the velocity ambiguity function
profile (it is symmetric), plotted on a logarithmic vertical
axis. The profile has the main correlation peak at 0dB on
the far left of the figure. The correlation behaviour falls
rapidly and is very variable with velocity out to the max-
imum velocity of interest. The Doppler sidelobe artefacts
are higher in the velocity domain than in range however
the combined sidelobe attenuation levels will provide use-
ful detection of high-flying targets in a multi-function radar
system. As the number of pulses used, N , is increased, the
level of the time and Doppler sidelobe artefacts reduces, en-
hancing performance further. The evolutionary method is
capable of optimising waveform structures with hundreds
of pulses if necessary.
As the number of pulses is increased for a given waveform
length T , the eclipsing profile and range ambiguity func-
tion become more difficult to optimise, however the ve-
locity ambiguity profile generally becomes simpler to opti-
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Figure 10: Eclipsing profile of optimised waveform.

mise as the individual pulse unambiguous velocity regions
in Doppler due to the shrinking pulse timing intervals be-
come larger.

4.2 1GHz 22ms Dwell, 256 pulses

The evolutionary process was reconfigured to search
for waveforms for a radar with a carrier of 1GHz,
Rmu=300km, range resolution of 20m, 256 transmitted
pulses all with lengths of τ=2µs, total dwell of 22ms and a
velocity space of interest of ±1500ms−1. The structure of
the waveform has an average duty cycle of 2.3% and rep-
resents a waveform that would be appropriate for a surveil-
lance radar with a 2◦ beamwidth and a 4 second scan.
Figure 10 shows the eclipsing profile of the optimised
waveform. At time zero, all of the pulses have a pres-
ence hence there are all 256 pulses visible as overlapping
to the left of the figure. The evolutionary algorithm has
again worked well to minimise the range eclipsing. % Fig-
ure 11 shows the range profile of the ambiguity function,
plotted on a logarithmic vertical axis. The profile has the
main correlation peak at 0dB on the far left of the figure,
falling rapidly as range advances. Overall the ambiguity
profile again shows good time-sidelobe performance.
Figure 12 shows one side of the velocity ambiguity function
profile. The profile has the main correlation peak at 0dB on
the far left of the figure. The Doppler sidelobe artefacts
are lower than in the 32-pulse example and allow the veloc-
ity of targets to be quantified well. The waveform is thus
suitable for use in a classic medium to long-range surveil-
lance radar application, yet easily provides unambiguous
measurements for both range and velocity.

5 Conclusions

The optimisation process has yielded range-velocity capa-
ble waveform designs that are practical to transmit and pro-
cess, yet are temporally very short. The eclipsing losses
have been optimised to a low level, aided by allowing
the transmission of chirp sections which help to decouple
the behaviour of the ambiguity function from the eclipsing
profile. In comparison to classic HPRF or MPRF wave-
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Figure 11: Range ambiguity profile of optimised waveform
(vertical scale in dB).
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Figure 12: Velocity ambiguity profile of optimised wave-
form (vertical scale in dB)

forms, the short-dwell arbitrary waveforms would allow the
surveillance volume to be scanned far more frequently, al-
lowing tracking performance to be improved and more flex-
ible time-management systems to be implemented.
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