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Abstract—This paper describes the development of a novel radar 

system acting as a virtual target to assist in the training of a 

marksman. It provides the miss distance of a bullet from an aim 

point in two axes as the bullet passes through the target plane. 

Initial work indicates that a low-cost solution can achieve 

millimetre-level accuracy irrespective of projectile velocity over a 

wide range of environmental conditions.  
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I.  INTRODUCTION 

In the training of a marksman for small arms fire on a firing 
range, an aim point is traditionally presented on a paper target 
which also acts as a witness screen to record the mis-distance 
from the hole left by the passing bullet. Paper targets have to be 
replaced regularly and are cumbersome and time consuming to 
use, especially over long ranges. These have gradually become 
replaced by acoustic or optical sensor systems which can 
automatically log the mis-distance of each bullet and relay this 
information to the shooter. Acoustic sensors triangulate the 
position of a supersonic bullet using three acoustic sensors on 
the ground which receive the conical shock wave created by 
the round passing above them. They do not work accurately for 
the spherical shaped pressure wave arising from sub-sonic 
rounds and are prone to errors due to variations in the velocity 
of sound in air (e.g. due to temperature, density variations) and 
due to wind. This limits their use to indoor ranges [1]. Optical 
systems use multiple parallel light beams and optical sensors 
arranged in a grid around a frame. As the round passes through 
the frame one or more of the light beams is cut and the position 
of the passing round is recorded. These can be expensive, do 
not cope well with changes in ambient light levels and are 
prone to damage from stray shots or debris kicked up by the 
fall of the shot beyond the target [2][3]. A low-cost solution 
has been sought which would overcome the problems of 
existing systems, operate in all conditions (indoors and outside) 
for all bullet velocities and yet yield an accuracy of about 4mm 
which is approximately half the calibre of a standard NATO 
round of 7.62mm as a design goal. Radar boasts good all-
weather and motion detection capabilities, however, the range 
accuracy requirement of a fraction of a wavelength for typical 
centimetric wave frequencies could clash with the low-cost 
expectation. Nevertheless, the modest cost of commercially 

available radar hardware and processing power makes a radar 
based solution a viable option.  

A prototype system has been designed initially under a 
knowledge transfer partnership (a UK government initiative to 
support a UK industrial partner in a project which requires the 
expertise and collaboration of a UK university); the concept 
was originally reported in [2].  More recently, the system has 
been further developed into a working prototype virtual 
targeting radar (VTR). 

Section II of this paper describes the concept of operation 
of the VTR system together with the theory of its design and 
signal processing. Parameters of its hardware design are 
presented in section III. In section IV, some simulation results 
and results of trial firings are presented and discussed together 
with analysis on the accuracy of the system. A few conclusions 
are drawn in section V and proposed further work is described. 

II. CONCEPT AND THEORY OF OPERATION 

A. The Concept of Operation 

The VTR consists of two radars at ground level separated 
by a baseline distance, d, which is approximately 2 metres. 
Each radar boresight is inclined upwards at 45º so that the 
boresights intersect at right angles. The region in which the 
beams overlap in the plane defined by the two boresight 
vectors defines the targeting plane, as shown in Fig. 1. The 
shooter is presented with an aim point by the intersection of 
two visible laser beams from a pair of diode lasers aligned to 
the boresight of each radar. A bullet passing through the beams 
between set velocity and amplitude limits triggers the recording 
of the data by each radar which is processed using inverse 
synthetic aperture radar (ISAR)-like techniques to extract the 
range to the bullet. Each radar measures the range to the bullet 
as it passes through the targeting plane. This yields the x and y 
coordinates of the bullet and hence its mis-distance in each 
plane from the target centre. 

Each radar module uses a differential phase difference 
method between two carrier frequencies to measure the range 
to the bullet. If a bullet is shot along the axis of the range then 
it intersects the targeting plane at a right angle. As it transits the 
targeting plane its Doppler shift goes through zero Hertz (Hz); 
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the bullet range at this point is computed. Each radar emits two 
continuous wave (CW) tones in the I-band and which are 
separated by a spacing frequency Δf, typically of a few MHz. 
Returns from the bullet are phase shifted over the two-way path 
to the bullet and back. Since the two-way distance exceeds a 
wavelength the 2π phase wrapping introduces range ambiguity. 
This ambiguity is resolved using the second carrier frequency. 
Returns from each carrier are down-converted into separate 
receiver channels By comparing the phase shift over the two 
carriers one obtains a differential phase shift equivalent to a 
carrier frequency equal to Δf. Since Δf is in the HF band the 
two-way path length does not exceed a wavelength and so no 
range ambiguity exists. Thus the range is measured at the point 
of closest approach, i.e. the targeting plane. Once this range has 
been measured along two orthogonal axes one has the x,y 
coordinates at which the bullet intersected the targeting plane 
and hence the mis-distance from the aim point. 

 

Figure 1.  VTR System Geometry 

 

The ability of the radar to make an accurate measurement 
of bullet range depends on the validity of the assumption that 
the bullet trajectory is orthogonal to the targeting plane and on 
the signal to noise ratio (SNR) of the returns. The differential 
phase method described here can achieve accuracies in the 
order of a fraction of a wavelength at I-band. It is worth noting 
that this radar system cannot resolve multiple targets. Whilst 
each radar can measure range very accurately, it has no range 
resolution whatsoever; returns from multiple scatterers would 
yield their vector sum and the system would declare one result 
which was not a true indication of any of the scatterers. Static 
clutter can be eliminated by applying a dc block on the video 
output signals. Since only one bullet would be expected to be 
within the beam at any one time, even for machine gun fire, 
this does not present a problem. 

B. Theory of Operation 

Each radar emits two CW tones; the frequencies of the two 
tones from one radar differ from those of the other in order to 
enable filtering to provide isolation between the two. It is 
sufficient for now to consider the operation of just one of the 

radars. The two frequencies are defined by a centre frequency, 
fc, and a difference frequency, Δf. The upper and lower 
frequencies are therefore: 

2
f
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2
f
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    (1b) 

The choice of fc was nominally 10GHz so that the length of 
a typical bullet corresponds to a half the free-space wavelength 
(λ = 3cm) and this coincidence maximizes the radar cross 
section (RCS) of the bullet. At the two frequencies, fL and fU 

we have two corresponding wavelengths, L and U, in which 
the suffix L denotes the lower frequency and the suffix U 
denotes the upper frequency. This gives rise to phase shifts, φL 
and φU over the range, R, to the bullet at any instant. 

At  fL we have: 
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and at fU we have: 
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where c is the speed of light. 

The phase difference between the two channels is therefore: 
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Due to the 2 phase wrapping, Δφ should not exceed 2 

otherwise range ambiguity results. For Δφ = 2, R = Rmu, where 
Rmu is the maximum unambiguous range, i.e. 
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which, on re-arranging gives: 
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and is a classic result for a stepped or dual frequency 
waveform. 

The complex output voltages can therefore be written: 

  ILQLL vjvv .   (6a) 

and 

  IUQUU vjvv .   (6b) 

in which the suffixes I and Q  denote the in-phase and 
quadrature phase channel outputs, respectively. 

The complex baseband signals are processed by a Fourier 
Transform. This yields a power spectrum and an angle 



spectrum. Let us denote the complex quadrature output signal 
previously given by the equation pair (6) in general as v(t). The 
suffixes L and U can be re-introduced later, as necessary. 

Substituting (2) into (6) gives: 
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which may be re-cast in exponential form as 
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The Fourier transform of this signal is defined as: 

     
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v(t) is defined within limits of time from t = 0 to tint , where 
tint is the integration time, therefore the limits of integration 
may be reduced to this range 
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V(ω) will be complex because the function v(t) is not an 
even function i.e. not symmetrical about t = 0 and so is 
comprised of sines and cosines.  

The Fourier transform of the complex quadrature output 
signal is therefore given by 
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Hence for the upper and lower frequencies we have: 
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and 
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in which R(t) is the range as a function of time. 

Taking the phase spectrum of the difference between this 
equation pair one may derive R(t). 

       LU VVtR          (10) 

Taking the phase difference at zero (or at a very low) 
Doppler frequency yields the range at the point of closest 
approach to the radar which corresponds to the targeting plane 
for a trajectory which is perpendicular to the targeting plane. 

Consider the geometry of the situation depicted in Fig. 2. 
The targeting plane is defined in the x,y plane. One radar is 
placed at the origin (0,0,0) and the other radar is placed a 
distance d from the first along the x-axis, i.e. at coordinates of 
(d,0,0). The centre is the point at which the boresights of both 
radars intersect and since both are inclined at 45º, the target 
centre lies at coordinates (d/2,d/2,0). The bullet intersects the 
targeting plane at a right angle for a bullet trajectory which is 

parallel to the z-axis. Let the range to the bullet in the targeting 
plane as measured by radars 1 and 2  be R1 and R2 respectively. 
Contours of equal range are circles centred at the locations of 
the radars (strictly, the phase centres of the radar antennas). 
The two circles of radii R1 and R2 overlap at two points given 
by [4]: 
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This yields two intercept points; one above the baseline 
(positive y), the other below the baseline (negative y). The 
latter case can be dismissed and the result can be taken as the 
former case. This intercept point must now be offset by the x 
and y coordinates of the aim point which are (d/2, d/2) and is 
the miss distance result declared to the shooter.  

The I/Q Doppler outputs from the radar units are sampled 
with two 4-channel analogue-to-digital converters running at a 
100kHz sample frequency.   The radii R1 and R2 are calculated 
for 5 sample points before and after the zero Doppler point.  
The mean of each set of 11 values is taken to provide averaged 
values for the radii R1 and R2 and then the x and y positions are 
generated. 

 

Figure 2.  VTR Coordinate System 

III. THE HARDWARE DESIGN 

A. Radar Hardware 

Radar returns are down-converted using a double 
superheterodyne receiver employing an image rejection mixer 
(IRM) in which the first local oscillator (LO1) runs at fc and the 
system’s first intermediate frequency (1

st
 IF) is tuned to Δf/2. 

The IRM has two outputs; one sensitive to the upper sideband 
and the other sensitive to the lower sideband. In this way, 
returns at the two carrier frequencies fall in each other’s image 
band and are separated into the two channels in the 1

st
 IF. The 

IRM offers approximately 25 dB of channel isolation. After 
amplification and filtering, a second stage of down-conversion 
is conducted in each channel direct to baseband using 
quadrature detectors. This results in in-phase (I) and quadrature 
phase (Q) channel outputs. An RF low noise amplifier (LNA) 
is included on the front end in order to minimize the system 
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noise figure and maintain an adequate SNR at the receiver 
outputs. The receiver block diagram is shown at Fig. 3. 

The two output signals are generated by mixing the LO1 
and LO2 signals, as shown in Fig. 4. Whilst this is a simple 
arrangement there remains some breakthrough of the LO1 
signal and intermodulation products on the output spectrum. 

 

Figure 3.  VTR Receiver Block Diagram 

 

 

Figure 4.  VTR Receiver 

 

At present the antenna system employs a bistatic 
arrangement of two wide beam/low gain horn antennas. The 
antenna centres are approximately 10cm apart and the targeting 
plane is in line with the midway point between the two 
antennas. Although this bistatic approach reduces the coupling 
between receive and transmit as compared to that provided by a 
circulator, the level of isolation is not quite sufficient to 
suppress interference from spurious modulation products 
arising due to the transmissions from the opposite radar via a 
sidelobe to sidelobe path. To alleviate this problem the 
antennas forming the bistatic arrangement of both radars are set 
up to radiate a horizontally plane polarized signal and to 
receive vertically plane polarized signals, so providing an 
additional 20dB of isolation. While this suppresses the 
interference, the desired returns are also reduced due to the 
lower cross-polar RCS of bullets (section IIIB). Nevertheless, 
there is a net gain in signal to interference ratio which gives a 
workable system. 

A summary of the radar parameters is provided in Table 1. 
 

TABLE I.  RADAR PARAMETERS 

Parameter Value 

Carrier Frequencies (radar 1, 2) 9880, 9900, 10090, 10110 MHz 

Parameter Value 

LO1 frequencies (radar 1, 2) 9890, 10100 MHz 

Δf,     (Rmu) 20 MHz,    (7.5 m) 

Transmitter Power (CW) +15 dBm per signal 

Antenna Gain 10 dBi 

1st IF centre frequency 

          bandwidth 

10 MHz 

± 60kHz 

Receiver Noise Figure  ≤ 6 dB 

P 1dB ≥ -25 dBm 

Receiver Gain 

Gain balance 
Phase matching 

60 dB nominal 

0.5 dB 
5 degrees 

Image channel rejection ≥ 25 dB 

IF Stop band rejection ≥ 60 dB at 10 MHz 

Doppler bandwidth 3 Hz – 30 kHz 

 

B. Bullet Radar Detectability 

Earlier work [3] reported on the measurement of the RCS 
of a variety of bullets at 10GHz. A bullet of diameter = 
7.62mm and length 28.4mm (close to one wavelength) has a 
peak H/H RCS when seen orthogonal to the axis of the bullet 
of 0.001 m

2
 (the peak V/V RCS was measured at 0.0007 m

2
 

under the same conditions). It was found that the RCS of a 
bullet could be approximated by that of a metal cylinder of the 
same dimensions as those of the bullet. 

The H/H target RCS of 0.001 m
2
 at a range of 4 metres 

would yield a SNR of 53 dB (assuming a noise limited 
detection and the absence of any losses), or 51.5 dB for the 
V/V RCS case.  Even allowing for further losses of 5dB for the 
cross-polar RCS of a smaller bullet, and the inclusion of 10 dB 
of additional losses, the SNR would be reduced to 36.5 dB.  

IV. RESULTS AND DISCUSSION 

A. Simulated Waveforms 

The waveforms generated by a bullet passing a single radar 
have been simulated and are presented in Figs. 5-7. Fig. 5 
presents the I and Q channel waveforms for one of the carrier 
frequencies transiting the beam in approximately 1.5 ms. Note 
the quadrature relationship between the two waveforms, the 
phase reversal at mid-way through the waveform as the bullet 
passes the targeting plane and the amplitude modulation due to 
the gain pattern of the antenna. Fig. 6 illustrates the power 
spectrum of the chirp waveform shown in Fig. 5 but with 
Gaussian noise added having a SNR of 20 dB. Fig. 7 depicts 
the differential phase spectrum between the two carriers; the 
upper plot giving the absolute phase difference and the lower 
plot showing the phase difference as it wraps between values of 
± π radians.  

B. Measured Waveforms 

Data captured from a 7.62mm round passing through the 
target at 823 m/s is illustrated in Fig. 8. The data burst lasts for 
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approximately 1.8ms as the bullet transits the radar beam. The 
upper plot is the I and Q channel data at fU and the lower plot 
shows the I and Q channel data at fL. These waveforms 
resemble the simulated waveforms of Fig. 5 quite well. The 
system processes this data and declares the miss distance from 
the centre in both x and y coordinates. The peak SNR at the 
zero crossing point is approximately 37 dB, which is in close 
agreement to the value predicted in section IIIB. 

 

Figure 5.  Simulated I & Q Waveforms [2] 

 

Figure 6.  Simulated Power Spectrum, SNR = 20dB 

C. Analysis of Accuracy 

The current signal processing assumes that the bullet 
trajectory is parallel to the z –axis since this ensures that the 
targeting plane does coincide with the point of closest approach 
and hence of zero Doppler. If the actual bullet trajectory has a 
gradient in either the horizontal (x,z) or vertical (y,z) planes, 
then the radars measure a range to the point of closest approach 
which is too low and an incorrect result is declared. The 
magnitude of this error depends on the baseline separation 
between the radars, the trajectory gradient and the actual miss 
distance from the target centre at which the bullet passes the 
targeting plane. The worst case gradient arises for the shortest 
length of the range (the distance between shooter and target) 
and the maximum displacement of the shooter from the centre 
of the range (limited to half the width of the shooting lane).  

For a range length of 25m and a displacement of 2m, the 
angle of the trajectory is 0.08 radians (4.6º). If the actual 
placement of the shot has zero x –axis miss distance then the 
declared result has a y-axis error only. 

 

Figure 7.  Simulated Differential Phase Spectrum 

(Upper Plot: Absolute Phase, Lower Plot: ± π Phase Wrapped) 

 

Figure 8.  Captured I & Q Data from 7.62mm round at 823 m/s 

(Upper Plot: fU, Lower Plot: fL) 
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However, if the actual placement of the shot misses the target 
centre in both the x and y axes then the declared result has both 
x and y -axis errors. The summary of errors derived from a 
parametric study is provided in Table 2 for an assumed 
baseline between the radars of 2m.  

It is worth noting that the error in the declared y –axis result 
is always negative, i.e. the declared result is always slightly 
lower than the true miss distance. This arises due to the fact 
that the measured ranges are slightly too short and so the point 
of overlap between the two circles of equal range is always 
closer to the baseline. The sign in the error in the declared x –
axis result follows the sign of the true miss distance in the x –
axis. 

TABLE II.  TRAJECTORY INDUCED ERRORS 

Trajectory 

Gradient 

[radians] 

True Fall of 

Shot (x,y) 

[m] 

Declared Result  

(x,y) 

[m] 

Errors in 

Declared 

Result (x,y) 

[mm] 

0.08 0  0 0  0.0064 0  -6.4 

0.08 0.2  0 0.1987  0.0063 1.3 -6.3 

0.08 0  0.2 0  0.2066 0  -6.6 

0.08 0.2  0.2 0.1987  0.2064 1.3  -6.4 

0.08 -0.2  -0.2 -0.1987  -0.1936 -1.3  -6.4 

0.08 0.5 0 0.4968  0.0056 3.2  -5.6 

0.08 0  0.5 0  0.5081 0  -8.1 

0.08 0.5  0.5 0.4968  0.5064 3.2  -6.4 

0.08 -0.5 -0.5 -0.4968  -0.4936 -3.2  -6.4 

 

The results in Table II above represent extreme cases of 
trajectory gradient and miss distances and yet even so the error 
in the declared result is typically in the order of 6mm which is 
nominally the same as the bullet calibre. 

TABLE III.  MONTE-CARLO ACCURACY SIMULATION RESULTS 

SNR

[dB] 
∆x σx ∆y σy CEP Prec Acc 

20 
0.37 
mm 

31.8 
mm 

0.46 
mm 

42.4 
mm 

41.9 
mm 

53.0 
mm 

0.62 
mm 

30 
0.09 

mm 

8.65 

mm 

0.59 

mm 

13.6 

mm 

13.1 

mm 

16.1 

mm 

0.61 

mm 

40 7.6μm 
2.52 

mm 

0.34 

mm 

4.44 

mm 

4.04 

mm 

4.76 

mm 

0.50 

mm 

50 24μm 
0.75 

mm 

0.30 

mm  

1.36 

mm 

1.27 

mm 

1.47 

mm 

0.31 

mm 

 

A Monte Carlo study of the effects of noise has also been 
undertaken and the results presented in Table III. 1000 
simulations were conducted adding Gaussian white noise to the 
baseband signals to give a range of SNR values and assuming a 
bullet trajectory which has no gradient, i.e. parallel to the z –
axis, and passing through the true target centre. This trajectory 

eliminates other potential sources of error so that the effects of 
noise alone and processing method can be studied.  Table III 
shows for a range of signal to noise ratios, the mean error in the 
horizontal axis (∆x), the standard deviation of horizontal errors 
(σx), the mean and standard deviation of errors in the vertical 
axis (∆y and σy), the 50% Circular Error Probable (radius about 
aim point that contains 50% of reported shots), Precision 
(standard deviation of cluster of all reports, relative to the 
cluster mean) and Accuracy (mean of the cluster of reports).  
The results show that the deviation in the horizontal axis tends 
to zero as expected, but the ∆y and Accuracy results show that 
there is a 0.3mm upward offset; the offset is due to the mean of 
the 11 readings that straddle the zero Doppler point being used 
to reduce noise in the calculation of the radii from each of the 
radars. The offset can be removed in calibration, or alternative 
processing methods employed. The Precision and 50% CEP 
results show clearly that at 40dB or better, the system can 
measure within a half calibre. Earlier calculations and 
estimated losses (section IIIB) and measured data (section 
IVB) suggest that noise-limited detections giving a SNR of 
about 37 dB are achievable and therefore the unit is capable of 
sufficient accuracy and precision. 

V. CONCLUSIONS 

A prototype virtual targeting radar has been designed and 
built. A system of two radars with orthogonal views each using 
a dual tone CW waveform forms a very practical solution as an 
automated virtual target for small arms fire training. The 
analysis of the radar configuration have been derived which 
give an x,y targeting function and allow its accuracy to be 
quantified. The frequency-domain signal processing algorithm 
has been developed. The prototype provides an exact indication 
of the miss distance with millimetre-level accuracy. The 
processing does however assume a trajectory normal to the 
targeting plane and this assumption introduces maximum errors 
in the order of bullet calibre. In spite of the simplicity of the 
design, the hardware costs for bespoke radars has been high. 

Future work is planned to use an array of commercially 
available low-cost radar modules, each of which emit a single 
CW tone. The signal processing would be extended to account 
for any arbitrary trajectory gradients. These modifications pave 
the way for the system to be scaled up to meet the targeting 
requirements for artillery and tank firing ranges. 

REFERENCES 

 
[1] P. Kisatsky, “Determining the position and trajectory of supersonic 

projectiles from acoustic measurements”, Technical Report ADA392161 
(Army Armemant Research Development and Engineering Center 
Picattiny Arsenal NJ), 2000. 

[2] G. Dingley, C. M. Alabaster, “Radar based automatic target system”, 
IEEE 4th International Conference on Waveform Diversity and Design, 
Orlando, FL, USA, 8th – 13th  February 2009  

[3] G. Dingley, “Automatic target system for small arms fire”, M.Phil to 
PhD transfer thesis, Cranfield University, Shrivenham, UK, August 
2008. 

[4] J. O’Rourke, Computational geometry in C. Cambridge University 
press, 1995, pp.306-307. 

 


