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Abstract

Gain scheduled control is one very useful control technique for linear parameter-varying (LPV) and nonlinear systems. A

disadvantage of gain-scheduled control is that it is not easy to design a controller that guarantees the global stability of the closed-

loop system over the entire operating range from the theoretical point of view. Another disadvantage is that the interpolation

increases in complexity as number of scheduling parameters increases. As an improvement, this paper presents a gain-scheduling

control technique, in which fuzzy logic is used to construct a model representing a quasi-LPV or a nonlinear missile and to perform a

control law. The fuzzy inference system is generated using a multi-objective evolutionary algorithm to optimize the performance

characteristics of the plant.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the most popular methods for applying linear
time-invariant (LTI) control theory to time-varying and/
or nonlinear systems is gain scheduling (Rugh, 1993;
Leith and Leithead, 2000). This strategy involves
obtaining Taylor linearized models for the plant at
finitely many equilibria (‘‘set points’’), designing an LTI
control law (‘‘point design’’) to satisfy local performance
objectives for each point, and then adjusting (‘‘schedul-
ing’’) the controller gains in real time as the operating
conditions vary. This approach has been applied
successfully for many years, particularly for aircraft
and process control problems. Relatively recent exam-
ples (some of which involve modern control design
methods) include jet engines (Lin and Lee, 1996), active
suspensions (Tran and Hrovat, 1993), high-speed drives
e front matter r 2005 Elsevier Ltd. All rights reserved.
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(Beaven et al., 1995), missile autopilots (Nichols et al.,
1993), and VSTOL aircraft (Hydg & Glover, 1993a,b,
1995).

Despite past success of gain scheduling in practice,
until recently little has been known about it theoretically
as a time-varying and/or nonlinear control technique.
Also, determining the actual scheduling routine is more
of an art than a science. While ad hoc approaches such
as linear interpolation and curve fitting may be sufficient
for simple static-gain controllers, doing the same for
dynamic multivariable controllers can be a rather
tedious process.

An early theoretical investigation into the perfor-
mance of parameter-varying systems can be found in
(Kamen and Khargonekar, 1984). During the 1980s,
Rugh and his colleagues developed an analytical frame-
work for gain scheduling using extended linearization
(Baumann and Rugh, 1986; Rugh, 1993; Wang and
Rugh, 1987). Also, Shamma and Athans (Shamma and
Athans, 1990, 1991, 1992) introduced linear parameter-
varying (LPV) systems as a tool for quantifying such
heuristic design rules as ‘‘the resulting parameter must
vary slowly’’ and ‘‘the scheduling parameter must
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capture the nonlinearities of the plant’’. Shahruz and
Behtash (Shahruz and Behtash, 1992) suggested using
LPV systems for synthesizing gain-scheduled control-
lers, and Shamma and Cloutier (Shamma and Cloutier,
1993) have used LPV plant models with m-synthesis
(Balas et al., 1994; Packard and Doyle, 1993; Packard et
al., 1993) for designing missile autopilots.

Attention has since turned to performance and design
of parameter-dependent controllers for LPV systems.
Various design methods which have been proposed
share several common features, e.g., the current
methods are based on extended state-space approaches
to H1 optimal control for LTI systems (Doyle et al.,
1989; Gahinet and Apkarian, 1994; Scherer, 1992;
Stoorvogel, 1992), and LTV systems (Ravi et al.,
1991). Performance is usually measured in terms of the
induced L2-norm, and controllers are designed for
certain classes of parameter variations, e.g., real or
complex values, arbitrarily fast or bounded rates of
variation, shape of the parameter envelope etc. The
resulting parameter-dependent controllers are scheduled
automatically, so that the often arduous task of
scheduling a complex multivariable controller a poster-
iori is avoided.

The existing methods also rely on linear matrix
inequalities (LMI) for computing controllers, character-
izing performance, and/or determining solubility of
design problems. Many problems involving LMI have
been found to arise in control theory (Boyd et al., 1994;
Packard et al., 1991). Moreover, efficient algorithms
have been developed for using convex programming to
solve feasibility and optimisation problems involving
LMI (Boyd et al., 1994; Nemirovskii and Gahinet,
1994); some have been incorporated into commercial
software for control system design (Balas et al., 1994;
Gahinet et al., 1995).

One approach involves LPV systems and controllers
whose parameter dependence can be expressed as linear-
fractional transformations (LFTs) (Doyle et al., 1991).
The approach relies on scaled small-gain methods and
scaled H1 optimisation to design parameter-dependent
controllers that also resemble LFTs and provide closed-
loop stability (Apkarian and Gahinet, 1995; Boyd et al.,
1994; Packard, 1994). Initial design examples (Spillman
et al., 1996) seem to indicate that the method is robust,
but conservative (as small gain methods tend to be); the
parameters are assumed to be complex and vary
arbitrarily quickly.

Another approach uses Lyapunov methods (Vidyasa-
gar, 1993) instead of the small-gain theorem to account
for parameter variation. Becker (Becker, 1993; Becker
and Packard, 1994) applied the notion of quadratic
stability (Barmish, 1995; Khargonekar et al., 1990;
Rotea et al., 1993) (well established for arbitrarily
quickly varying LTV systems) to LPV systems, and
extended it to quadratic performance by adding
sufficient conditions for bounding the induced L2-norm.
These conditions are characterized by a single quadratic
Lyapunov function (SQLF) that satisfies certain LMIs.
Becker’s doctoral thesis presents an LMIs method for
providing quadratic performance using linear para-
meter-dependent feedback.

Since the parameters are expected to vary arbitrarily
quickly, this SQLF method has also been found to be
conservative (Apkarian et al., 1995; Apkarian et al.,
1995; Wu et al., 1996). However, Wu and others
(Becker, 1996; Wood, 1995; Wu, 1995) have reduced
the conservatism of this natural extension to LMI-based
H1 control (Gahinet and Apkarian, 1994; Iwasaki and
Skelton, 1994) (though at a greater computational cost)
by using parameter-dependent quadratic Lyapunov
functions (PDLFs) that allow for a priori bounds on
the parameters’ rates of variation. Parameter-dependent
quadratic Lyapunov functions have also been used by
Haddad and Bernstein (Haddad and Bernstein, 1993;
Haddad and Bernstein, 1995), and by Apkarian,
Gahinet, and their colleagues (Feron et al., 1996;
Gahinet et al., 1996) to study robustness of LTI systems
to constant (or slowly varying) real, parametric un-
certainty.

In this paper a sideslip velocity autopilot is designed
for a realistic model of a tactical missile using fuzzy gain
scheduling. The tail-controlled missile in the cruciform
fin configuration (Horton, 1992) is modelled as a
second-order quasi-linear parameter-varying (QLPV)
system. This missile model is obtained from the Taylor
linearized model of the horizontal motion by including
explicit dependence of the aerodynamic derivatives on a
state (sideslip velocity) and external parameters (long-
itudinal velocity and roll angle). The first contribution is
to consider this detailed QLPV (and thus nonlinear)
model.

The autopilot design is based fuzzy pole-placement
control. The performance objectives related with the
transient, i.e. settling time, rising time, peak overshoot
are achieved with the fuzzy pole-placement. However,
since our problem is one of tracking, an additional
performance objective, that of zero steady-state error
should be taken into account. This can be achieved with
an integral term in forward loop. In this scheme,
unknown parameters are estimated and based on these
estimates, control parameters are updated. Computer
simulations show that this approach is very promising
for the motion control design for missiles, which are
highly quasi-linear in dynamics. The optimisation of the
fuzzy system is performed using a multi-objective
evolutionary algorithm.

Evolutionary Algorithms are iterative optimization
procedures inspired by Darwin’s hypothesis that ani-
mals in the natural world adapt to fit the environment
better through a process of survival of the fittest (Zalzala
and Flemming, 1997). Unlike most classical optimisa-
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tion methods that use the local gradient of the quality,
or objective function, to perform a local search,
evolutionary algorithms utilize a parallel search of the
problem space. Where conventional algorithms are
prone to becoming stuck in local optima, evolutionary
algorithms are capable of finding global optima too.

In problems with multiple objectives, there may not
be one single solution. There is more likely to be a set of
solutions (called the Pareto set) where objectives
conflict, leading to no one single solution which is better
in all objectives.

In order to use a conventional optimization process
with multiple objectives, the objectives must be com-
bined into a single value to optimize. In order to
construct the Pareto set, multiple runs of the optimizer
must be performed with different combinations of the
objectives (often weights are used to express the relative
significance of each objective).

Because the evolutionary algorithm employs a parallel
optimization search, it is possible to generate an
approximation of the entire Pareto set in a single
optimization run (Deb, 2001). The primary aim of this
paper is the demonstration of the concept of applying
multi-objective evolutionary algorithms to this form of
control problem. The multi-objective algorithm used is
considered a ‘lower benchmark’ on what is achievable
through evolutionary methods. The basic non-domi-
nated ranking is known to be weak at spreading out
solutions across the Pareto set, and the convergence rate
is not as fast as some more recent algorithms such as
NSGA2 (Deb et al., 2000), SPEA2 (Zitzler et al., 2001)
and �-MOEA (Deb et al., 2003).

Section 2 details the missile model and coefficients,
Section 3 describes the design of the controller and the
structure of the fuzzy inference system. The multi-
objective evolutionary algorithm is detailed in Section 4.
Section 5.2.1 shows typical results from the optimization
process and Section 6 concludes.
2. Quasi-linear parameter varying missile model

Missile autopilots are usually designed using
linear models of non-linear equations of motion and
aerodynamic forces and moments (Horton, 1995;
Wise, 1992). The objective of this paper is the
design of a lateral acceleration autopilot for a
quasi-linear parameter varying missile model. This
model describes a reasonably realistic airframe of a
tail-controlled tactical missile in the cruciform fin
configuration (Fig. 1). The aerodynamic parameters in
this model are derived from wind-tunnel measurements
(Horton, 1992).

The starting point for mathematical description
of the missile is the following non-linear model
(Tsourdos et al., 1998; Horton, 1992) of the horizontal
motion (on the xy plane in Fig. 1):

_v ¼ yvðM ; l;sÞv�Urþ yzðM; l;sÞz

¼ 1
2

m�1rV oSðCyv
vþ V oCyzzÞ �Ur,

_r ¼ nvðM; l;sÞvþ nrðM; l;sÞrþ nzðM; l;sÞz

¼ 1
2

I�1z rV oSdð1
2

dCnrrþ Cnv vþ V oCnz zÞ. ð1Þ

where the variables are defined in Fig. 1.
Here v is the sideslip velocity, r is the body rate, z the

rudder fin deflections, yv; yz semi-non-dimensional force
derivatives due to lateral and fin angle, nv; nz; nr semi-
non-dimensional moment derivatives due to sideslip
velocity, fin angle and body rate. Finally, U is the
longitudinal velocity. Furthermore, m ¼ 125 kg is the
missile mass, r ¼ r0 � 0:094h air density
(r0 ¼ 1:23 kgm�3 is the sea level air density and h the
missile altitude in km), Vo the total velocity in m s�1;
S ¼ pd2=4 ¼ 0:0314m2 the reference area (d ¼ 0:2m is
the reference diameter) and Iz ¼ 67:5 kgm2 is the lateral
inertia. For the coefficients Cyv

;Cyz ;Cnr ;Cnv ;Cnz only
discrete data points are available, obtained from wind
tunnel experiments. Hence, an interpolation formula,
involving the Mach number M 2 ½0:6; 6:0�; roll angle l 2
½4:5�; 45�� and total incidence s 2 ½3�; 30��; has been
calculated with the results summarized in Table 1.

The total velocity vector ~Vo is the sum of the
longitudinal velocity vector ~U and the sideslip velocity
vector ~v; i.e. ~V o ¼ ~U þ~v; with all three vectors lying on
the xy plane (see Fig. 1). We assume that Ubv; so that
the total incidence s; or the angle between ~U and ~Vo;
can be taken as s ¼ v=Vo; as sin s � s for small s:
Thus, we have s ¼ v=Vo ¼ v=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þU2

p
; so that the

total incidence is a non-linear function of the sideslip
velocity and longitudinal velocity, s ¼ sðv;UÞ:

The Mach number is obviously defined as M ¼ Vo=a;
where a is the speed of sound. Since Vo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þU2

p
; the

Mach number is also a nonlinear function of the sideslip
velocity and longitudinal velocity, M ¼Mðv;UÞ:

It follows from the above discussion that all
coefficients in Table 1 can be interpreted as nonlinear
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Table 1

Coefficients in non-linear model (1)

Interpolated formula

Cyv
0:5½ð�25þM � 60jsjÞð1þ cos 4lÞþ
ð�26þ 1:5M � 30jsjÞð1� cos 4lÞ�

Cyz 10þ 0:5½ð�1:6M þ 2jsjÞð1þ cos 4lÞþ

ð�1:4M þ 1:5jsjÞð1� cos 4lÞ�
Cnr �500� 30M þ 200jsj

Cnv smCyv
; where:

sm ¼ d�1½1:3þ 0:1M þ 0:2ð1þ cos 4lÞjsjþ
0:3ð1� cos 4lÞjsj � ð1:3þm=500Þ�

Cnz sf Cyz ; where:

sf ¼ d�1½2:6� ð1:3þm=500Þ�
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functions of three variables: sideslip velocity v, long-
itudinal velocity U and roll angle l:

For an equilibrium ðv0; r0; z0Þ it is possible to derive
from (1) a linear model in incremental variables, v̄¼

:
v�

v0; r̄¼
:

r� r0 and z̄¼: z� z0: In particular, for the straight
level flight (with gravity influence neglected), we have
ðv0; r0; z0Þ ¼ ð0; 0; 0Þ; so that the incremental and abso-
lute variables are numerically identical, although con-
ceptually different.

2.1. Quasi-linear parameter-varying representation

The missile model introduced in Eq. (1) is non-linear
with explicit state dependence, v, directly proportional
to s: The technique presented in this paper, gain
scheduling (Rugh and Shamma, 2000; Leith and Leit-
head, 2000), starts from the quasi-linear parameter-
varying form of this model.

Assume the non-linear model of the form,

_x ¼ f ðx; u; qÞ,

y ¼ hðx; u; qÞ, ð2Þ

where x is the state vector, u is the control input of the
system, y is the output and q an exogenous parameter.

The set, E; of operating points (equilibrium points) of
Eq. (2) depends on parameter q 2 R and is denoted as

E ¼ fðx0; u0; qÞ 2 X�U�Rj f ðx0; u0; qÞ ¼ 0g. (3)

The set of equilibrium for the missile is defined
as E ¼ fðv0; r0; z0;U0; l0Þ 2 X�U�Rj f ðv0; r0; z0;U0;
l0Þ ¼ 0g where f ðv; r; z;U ; lÞ represents the non-linear
differential equation (1). The parameter p ¼ ðv;U ; lÞ is
introduced and it uniquely determines an operating
point (equilibrium point) of the system (a point of E).
This parameter p depends on the state variable v and on
the external parameters U and l:

Note that the control of the lateral acceleration
(latax), av; can be approximately performed via the
control of the lateral velocity, av ¼ _vþUr � yvv; since
the term yzz will be small, due to the small lateral force
generated by the tail fins compared to the tail fin
moment.

Assuming incremental state variable, dx ¼ x� x0ðpÞ;
control input, du ¼ u� u0ðpÞ; and output, dy ¼

y� y0ðpÞ; Taylor linearization of the nonlinear system
(2) at an operating point of E; uniquely defined by
parameter p, leads to

d _x ¼
qf

qxjp
dxþ

qf

qujp
du,

dy ¼
qh

qxjp
dx. ð4Þ

For an equilibrium ðv0; r0; z0Þ uniquely defined by p,
the Taylor linearization of (1) gives a linear model in
incremental variables, dv¼

:
v� v0; dr¼

:
r� r0 and dz¼: z�

z0: In fact, dependence on p states a quasi-linear
parameter-varying (QLPV) form (5), with p comprises
both a state variable, v and external parameters, U and
l:

_dv ¼
qyv

qv
vþ yv þ

qyz

qv
z

� �
jp

dv�U jpdrþ yzjpdz,

_dr ¼
qnv

qv
vþ nv þ

qnr

qv
rþ

qnz

qv
z

� �
jp

dvþ nrjpdrþ nzjpdz,

dy ¼ dv. ð5Þ

In particular, for the straight level flight, we have
ðv0; r0; z0Þ ¼ ð0; 0; 0Þ; so that the incremental and abso-
lute system forms are identical even if conceptually
different, see Eq. (6).

_dv

_dr

" #
¼

yvðpÞ �p2

nvðpÞ nrðpÞ

" #
dv

dr

" #
þ

yzðpÞ

nzðpÞ

" #
dz,

dy ¼ ½1 0�
dv

dr

" #
. ð6Þ
3. Fuzzy gain scheduling

3.1. An overview

Fuzzy logic has been a very useful tool for missile
autopilot design. It has been successfully applied to the
same missile model in the past (White et al., 2000; White
et al., 2001a; White et al., 2001b) to improve the
robustness of the autopilot based on non-linear dynamic
inversion. Here instead of a global linearized autopilot
we would use the fuzzy logic for smooth and stable gain
scheduling. Fuzzy gain scheduling has become a very
attractive approach for many aerospace control design
application (Fleming et al., 2002; Hwang and Lin, 2003;
Wu et al., 1999; Nam and Hong, 2003). The tuning of
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the fuzzy controller can be implemented either with the
use of linear matrix inequalities or using genetic
algorithms. It has been shown in (Molina-Cristobal et
al., 2004) that using multi-objective genetic algorithms
one can obtain a controller with better performance
than when linear matrix inequalities are used, while
maintaining the stability properties of the LMI optimi-
zation approach.

Fig. 2 shows a block diagram description of gain
scheduling. The linear parameter-varying system con-
stitutes a family of systems. For each member of this
family of systems a LTI design is carried on. This
discrete family of gain feedback controllers is first
computed to guarantee performance at some operating
points (related to p) and valid in its neighborhood. The
linear interpolation of these controllers carries over the
performance of the closed-loop system on the whole
flight envelope. The controller provides an incremental
control input dz and its total control to the plant is
recovered as zðpÞ ¼ z0ðpÞ þ dz:

3.2. Design of the sideslip velocity autopilot

Section 2.1 described the Horton missile in a
linearized form and from Eq. (5) the incremental
closed-loop system is derived for state feedback as
follows:

d _x ¼ AðpÞdxþ BðpÞdu ¼ ½AðpÞ þ BðpÞKðpÞ�dx, (7)

where KðpÞ ¼ ½K1ðpÞ K2ðpÞ� is the gain scheduled con-
troller.

A suitable pole placement for this closed-loop system
(7) will guarantee stability and performance accordingly.
A polytopic approach is chosen here to capture the
system nonlinearities. The polytope has to be sufficiently
fine and representative of the closed-loop system on the
full flight envelope. However, the convex hull on the full
range of flight envelope gives only very limited insight of
the nonlinearities involved and a family of convex hulls
representative of the system on the flight envelope is
preferred.

Using evolutionary algorithms, the flight envelope is
split as many times as necessary to satisfy the
performance criteria. This approach leads to a discrete
family of controllers each of them valid in its direct
neighborhood i.e. its corresponding convex polytope.
The family of polytopes, noted P has to cover the whole
+
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Fig. 2. Block diagram description of the gain scheduling controller.
flight envelope, F;[
ði;j;kÞ2Nl�Nm�Nn

Pði; j; kÞ ¼ P �F, (8)

where ðl;m; nÞ is the total number of controllers on each
dimension. From the design results a family of
controllers given by

K ¼ fKði; j; kÞj 8ði; j; kÞ 2 Nl �Nm �Nn

Kði; j; kÞ valid on polytope Pði; j; kÞg. ð9Þ

So far, the performance has been guaranteed only on
each individual convex polytope. To extend this result to
the whole flight envelope further constraints on the
design have been imposed. The linear interpolation of
the gains of successive controllers has been considered in
the following. Each controller Kði0; j0; k0Þ has to
satisfy the design objectives at pði0; j0; k0Þ and in its
direct neighborhood in a common domain with other
neighboring controllers. In this work the direct neighbor
of Kði0; j0; k0Þ considered is as far as the
pði; j; kÞ 8ði; j; kÞ 2 fi0 � 1; i0 þ 1g � fj0 � 1; j0 þ 1g �
fk0 � 1; k0 þ 1g: Finally, any linear combination of these
controllers in a direct neighborhood satisfies the
performance. Fig. 3 is an attempt to visualize such
polytopes for low dimensions.

The linear interpolation between these controllers
carries over the performance properties of the closed-
loop system to the whole flight envelope.
4. Multi-objective evolutionary algorithm

4.1. Overview to multi-objective approach

Evolutionary Algorithms are optimization procedures
which operate over a number of cycles (generations) and
are designed to mimic the natural selection process
through evolution and survival of the fittest (Deb, 2001).
Their use in optimization of control systems is growing
(Fleming and Purshouse, 2002). A population of M

independent individuals is maintained by the algorithm,
each individual representing a potential solution to the
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problem. Each individual has one chromosome. This is
the genetic description of the solution and may be
broken into n sections called genes. Each gene represents
a single parameter in the problem, therefore a problem
that has eight unknowns for example, would require a
chromosome with eight genes to describe it.

The three simple operations found in nature, natural
selection, mating and mutation are used to generate new
chromosomes and therefore new potential solutions. In
this paper, an evolutionary strategy was used where new
chromosomes were generated by a combination of
mating (otherwise known as crossover) and applying
Gaussian noise to each gene in each chromosome, with a
standard deviation that evolved along with each gene.
Each chromosome is evaluated at every generation using
an objective function that is able to distinguish good
solutions from bad ones and to score their performance.
With each new generation, some of the old individuals
die to make room for the new, improved offspring.
Despite being very simple to code, requiring no
directional or derivative information from the objective
function and being capable of handling large numbers of
parameters simultaneously, evolutionary algorithms can
achieve excellent results.

4.2. Algorithm structure

The evolutionary strategy begins by generating an
initial population of 50 chromosomes at random with
the standard deviations of the mutations all set initially
as one eighth of the total range of each gene. The initial
population is evaluated and objective values generated
(see Section 4.3) and then sorted (Section 4.4). Cross-
over and mutation are then applied to the chromosomes
to generate another 50 chromosomes. These new
chromosomes are then evaluated and the best 50 from
all 100 chromosomes are chosen for the next generation.
The process is repeated for 100 generations.

The crossover operation takes each chromosome in
turn (chromosome a), and for each chooses a second
chromosome at random (with replacement) to cross with
(chromosome b). A new chromosome (c) is generated
70% of the time using (10), and for the remaining 30%
of the time, a copy of chromosome a is made. In (10), ak;
bk & ck are gene k of chromosomes a, b & c and Uk is a
uniform random number in the range [0,1] chosen anew
for each gene and each chromosome a.

ck ¼ ak þ ðbk � akÞð1:5U � 0:25Þ. (10)

The evolutionary strategy updates the standard
deviation of the mutation and the value of each gene
for every gene in each new chromosome, using (11). In
(11), s0kðxÞ is the standard deviation of gene k of
chromosome x, o0kðxÞ is the value of gene k of
chromosome x, Nð0; 1Þ is a random number with zero
mean and unity variance Gaussian distribution and is
chosen once per chromosome, Nkð0; 1Þ is a random
number with zero mean and unity variance Gaussian
distribution and is chosen afresh for every gene, and n is
the number of genes in each chromosome.

s0kðxÞ ¼ skðxÞ expðt0Nð0; 1Þ þ t1Nkð0; 1ÞÞ,

o0kðxÞ ¼ okðxÞ þ s0kðxÞNkð0; 1Þ,

t0 ¼
1ffiffiffiffiffiffiffiffiffi
2
ffiffiffi
n
pp ,

t1 ¼
1ffiffiffiffiffi
2n
p . ð11Þ

4.3. Chromosome structure and objectives

4.3.1. Chromosome

The chromosome structure needs to represent both
the membership functions for the two inputs, and the
output values for every possible rule. Three, four and
five membership functions have been used for each of
the two inputs. The member functions are triangular
and overlapping to always give a unity sum as shown in
Fig. 4. Other membership function shapes could be used
that will give a smoother output map, such as Gaussian,
but it is much more difficult to maintain the sum of the
functions at unity, and also guarantee that there will be
no gaps. It is also likely that more membership functions
will be required, unless the spread of each side of the
Gaussian is controlled independently.

For the two inputs, the input ranges are e0 ¼ 0:6 to
em ¼ 6 for the Mach number, and e0 ¼ 0� to em ¼ 30�

for the incidence. For example, for four member
functions on an input, three genes are required to
describe the relative positions of the peaks of the
member functions as shown in Fig. 4. This process
gives a total of four genes to represent the membership
functions for three member functions per input, six
genes for four member functions per input, and eight for
five member functions. Each of the genes must lie in the
range (0,1].

With n member functions per input, there will be n2

possible rules. The output value for each the rules is
simply a triplet of constants, one for each of the three



ARTICLE IN PRESS
A. Tsourdos et al. / Control Engineering Practice 14 (2006) 547–561 553
outputs. Therefore with say four input member func-
tions on each input, there are 16 possible rules, at 16
possible combinations of Mach and incidence. At each
Mach–incidence combination, the three control gains
are calculated by evaluating a local model of the system.
The gains calculated by the local model are then
associated with the corresponding rule and used to
create the fuzzy control surface.

4.3.2. Objectives

The performance is tested by generating the step
response of the system for 100 uniformly spaced points
in the Mach/incidence domain (10 per input). The rise
time and settling time of the system are recorded at each
point. Two objectives are then generated that summarize
the performance of each chromosome.

The first objective is taken as the difference between
the slowest and fastest rise times of the 100 trials for
each chromosome. The second objective is the difference
between the slowest and fastest settling times.

4.4. Non-dominated ranking

With multiple objectives, a Pareto-optimal set of
results (Deb, 2001) may be formed where no single
solution is better than any other in all objectives. These
solutions are said to be non-dominated as no solution can
be chosen in preference to the others based on the all
objectives alone. There exists a single Pareto-optimal set
of solutions to the problem. At any intermediate stage of
optimization, a set of non-dominated results will have
been identified. This set may or may not be the Pareto
optimal set.

A non-dominated ranking method (Deb, 2001) is used
in the evolutionary algorithm to generate and maintain
a non-dominated set of results. Conventional evolu-
tionary algorithms often use a ranking method where
the calculated objective values are sorted and assigned a
rank that is dependent only upon their position in the
list, rather than their objective value. The ranking
operation helps to prevent premature convergence of the
evolutionary algorithm.

The non-dominated ranking system operates by first
identifying the non-dominated solutions in the
population and assigning them a rank of one. A dummy
value (1 in this implementation) is assigned to these
solutions and a sharing process is applied. With the
sharing, the dummy values of the individuals are
reduced if they have near neighbours (in the objective
space). The sharing process ensures that a spread of
solutions is obtained across the non-dominated
front. The minimum value assigned to the level-one
solutions is identified and then reduced slightly
(by 1%) and used as a dummy value for the next level
of processing. The level-one individuals are removed
from the population and the identification–sharing
process repeated on the remaining set, using the reduced
dummy value for the sharing operation. The ranking
process is continued until all of the individuals have
been accounted for. The resulting objectives are
intended to be used with a maximization strategy and
have been adjusted to allow both of the objectives to be
minimized.
5. Closed-loop performance requirements

The autopilot is required to track lateral acceleration
commands ayd over the whole flight envelope. This
should guide us to set a number of design objectives and
use the evolutionary algorithm approach describe in
previous section to obtain the fuzzy (PDC) controller
for our missile lateral autopilot.

Settling time based cost function: For the maximum
settling time case,

J1i
¼

ReðnpiÞ � ReðppiÞ

ReðnpiÞ � sri

, (12)

where sri is the location of the corresponding right
boundary. Similarly for the minimum settling time case
J2i
:
Damping ratio based cost function: For the maximum

damping ratio case,

J3i
¼

ynpi
� yppi

ynpi
� yzmax

, (13)

where anpi
and appi

are the angles between the negative
real axis and npi and ppi; respectively. azmax

¼ cos�1zmax

is the lower bound required for api: Similarly for the
minimum damping ratio case J4i

:
Composite cost function:

Ji ¼ maxfJ1i
; J2i

; J3i
; J4i
g. (14)

To find a best solution that results a desired controller
(i.e Jip1), a global minima search method, otherwise
the evolutionary algorithm approach described in
previous section will be used.

5.1. Pole colouring

The controller synthesis can initially be done by
assigning the dominant poles, ppi to the specific
locations which satisfy certain settling time and damping
ratio constraints. These poles are paired with nominal
poles, npi; which are attached to a D-stability region
(Söylemez, 1999).

5.1.1. Experimental results

Figs. 5–8 show a set of typical non-dominated
surfaces after 100 generations for each of the member-
ship function configurations. Neither of the three
objectives can be minimized simultaneously, so the
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Fig. 5. Non-dominated set for 5 membership functions (MF) each, 4

MF each and 3 MF each (spread of steady-state error against spread of
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Fig. 6. Non-dominated set for 5 membership functions (MF) each, 4

MF each and 3 MF each (spread of settle against spread of rise).

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

20

40

60

80

100

120

140

spread of settle

sp
re

ad
 o

f s
te

ad
y 

st
at

e 
er

ro
r 3MF 

4MF 

5MF 
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MF each and 3 MF each, 3D plot of all three objectives.
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Pareto front forms curves. All of the solutions on the
non-dominated front are valid solutions to the problem
and it is down to the system designer to choose a single
solution for use in the control system.

Figs. 9 and 10 show the locations of the membership
functions for the 3 membership function system (MF 1
and 3 are at zero and 1, respectively). The positions are
sorted to correspond to the order of the points on the
Pareto set, with point 1 corresponding to the solution
with the lowest spread of rise time. Figs. 11–14 show the
corresponding plots for the trials with 4 and 5 member-
ship functions per input.

It is apparent from Figs. 9, 11 and 13 that the Mach
input is dominant when shaping the control surfaces,
also the spread of rise times plays a significant role in the
evolutionary process. The lines on the plots progress
relatively smoothly with respect to the objective surface,
whereas Figs. 10, 12 and 14 have little correlation with
the progression of the objectives. This effect suggests
that fewer membership functions are required for the
incidence input.

Figs. 15 and 16 show the surfaces generated
by the fuzzy inference systems for the two control
gains for the solution with 5 membership functions in
both inputs that minimizes the error in the pole
locations.

Simulation response for the normalized acceleration is
shown in Fig. 17. It can been easily observed that the
controller meets all the objectives and the steady state
error in within the 10% bounds.
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Fig. 12. Membership function locations for Incidence and 4 member

functions.
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5.2. Tracking control design

The controller described in previous section
would result only to a desired transient of all local
models by placing the poles of all the local
systems within a specified area. Since however the
objective of a missile autopilot, apart of good transient
is minimum steady state error we have to include that in
the other design specifications. Zero steady state error
can be achieved with an integral term in the forward
path.

The new augmented model would contain for this
system one more state variable to account for this
integral term. This new state variable is defined as

xi ¼

Z t

t0

edt ¼

Z t

t0

ðy� rÞdt. (15)

Therefore,

_xi ¼ ½yd � r�. (16)

The state space now is described by

_x

�

_xi

2
64

3
75 ¼ AðpÞ 0

�C 0

� �
x

xi

" #
þ

B

0

� �
zþ

0

I

� �
r. (17)
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functions.
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functions.
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The compensated system therefore becomes:

_x

�

_xi

2
64

3
75 ¼ AðpÞ � BKðpÞ �BKi

�C 0

� � x

�

xi

2
64

3
75þ

0

�

I

2
64

3
75r. (18)

The characteristic polynomial of the compensated
system is then equated with the desired polynomial at
each step to adapt the controller gains.

The compensated system is of one order higher than
the nominal one. This is because of the integral term,
added for tracking purposes. The third pole has to be
placed however in such location that the third order
compensated system to behave similar to a second order.
This adds an extra requirement to the selection of gains
for pole placement.

5.2.1. Experimental results

Fig. 18 shows a set of typical non-dominated surfaces
after 100 generations for each of the membership
function configurations. Both of the objectives cannot
be minimized simultaneously, so the Pareto front forms
curves.

Figs. 19 and 20 show the locations of the membership
functions for the 3 membership function system (MF 1
and 3 are at zero and 1 respectively). The positions are
sorted to correspond to the order of the points on the
Pareto set, with point 1 corresponding to the solution in
the top left hand corner of the Pareto set. Figs. 21, 22, 24
and 19 show the corresponding plots for the trials with 4
and 5 membership functions per input.

It is clear from Figs. 19, 21 and 23 that the Mach
input is dominant when shaping the control surfaces.
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The lines on the plots progress smoothly with respect to
the objective surface, whereas Figs. 20, 22 and 24 have
little correlation with the progression of the objectives.
This effect suggests that fewer membership functions are
required for the incidence input.

Figs. 25–27 show the surfaces generated by the fuzzy
inference systems for the three control gains for the
solution with 5 membership functions in both inputs
that minimizes the error in the spread of rise times.

Fig. 28 shows the controller gains obtained by fuzzy
gain scheduling using 5 membership functions and the
controller gains obtained using LPV shelf-scheduling
controller using 100 local models. Since the values of the
controller gains obtained from the two different gain
scheduling design approaches are very close we can
conclude that our 5 MF fuzzy gains scheduling can
achieve similar performance as the one using LPV
shelf-scheduling controller using 100 local models.
That is achieved without the use of much higher gain
values. Therefore, one could claim that the use of
evolutionary algorithms for fuzzy gain scheduling design
allows us to reduce the number of local models while
achieving similar properties as LPV shelf scheduling
controller using LMI type approaches. This approach
removes the usual ad-hoc choice of the necessary
number of local models that have to be selected in the
gain scheduling.
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functions.
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Fig. 22. Membership function locations for Incidence and 4 member

functions.
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Fig. 23. Membership function locations for Mach and 5 member

functions.
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Simulation response for the normalized acceleration
shown in Fig. 29. It can be observed that the controller
meets all the objectives including zero steady state error.
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Fig. 25. Example gain surface for K1 and 5 MF per input.
6. Conclusions

This paper has shown that a fuzzy pole-placement
controller can be designed for complex non-linear
systems to produce given performance over a range of
plant conditions. The use of evolutionary algorithms to
optimism the fuzzy inference system removes the
requirement of expert knowledge to design the fuzzy
landscape as the multi-objective algorithm is capable of
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Fig. 29. Normalized acceleration using the pole colouring approach.
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discovering a range of solutions with little designer
intervention.

The multi-objective formulation allows many poten-
tial solutions to be generated simultaneously. The
designer can then choose a candidate solution whilst
being informed of what other solutions to the problem
may exist.
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