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MediumPRFRadarPRFSelectionUsing
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Abstract—Previouswork hasdemonstratedthat evolutionary algorithms
are an effective tool for the selectionof optimal pulserepetition fr equency
(PRF) sets to minimise range-Doppler blindness in a highly simplified
model of a medium PRF radar. In this paper we extendthe work consid-
erably by consideringthe detailed effectsof side-lobeclutter and the many
technical factors affecting the choiceof radar PRF in a medium PRF mode
of operation of a practical fir econtrol radar.

The abilities of the evolutionary algorithm are exploited further by not
only consideringthe traditional useof eight PRFs,but alsothe useof nine,
whilst maintaining the ability to transmit all the PRFswithin the dwell time
on the target. By using9 PRFs,it is shown that superior blind zoneperfor-
mancecan be achieved. Unlike all previous work, the algorithm presented
alsoensuresthat all the solutionsproducedare fully decodable,i.e. can re-
solve the range and Doppler ambiguities inherent in a medium PRF, and
have no blind velocities. It was found that the evolutionary algorithm was
able to identify near-optimum PRF setsfor a realistic radar systemwith
only a modestcomputational effort.

Keywords— Medium PRF Radar, Pulsed-DopplerRadar, Evolutionary
Algorithms.

I . INTRODUCTION

ANY modernradarsystemsusemediumpulserepetition
frequency (PRF)waveformsto measurebothtargetrange

andvelocityaccuratelyin thepresenceof clutter. MediumPRF
radarspossessexcellentclutter rejectioncharacteristicswhich
renderthemanattractivepropositionfor airborneintercept(AI),
fire controlsystems,groundbasedair surveillance,weaponlo-
catingradarandavarietyof otherapplications.

A radarusingasinglemediumPRFgenerateshighly ambigu-
ousrangeandDopplerdataandsuffersfrom a numberof blind
regionsin rangeandvelocity. Theambiguitiesmayberesolved
by operatingonseveralPRFs,typically eight,andrequiringtar-
getdatain aminimumnumber, typically three,in whatis known
asa threefrom eightscheme.Theproblembecomesoneof se-
lecting suitablecombinationsof PRFsto resolve the ambigui-
ties,minimisetheblind zones,avoid blind velocitiesandreduce
problemsof ghosting,wherebyincompleteresolutionof theam-
biguitiesin thepresenceof noisecanleadto falsetargets.

The spreadof PRFsis governedby soundengineeringprin-
ciples,basedon clutter rejectionandtarget illumination times.
However, thetraditionalapproachto theselectionof preciseval-
uesoftenresultsin mediocreradarperformance.Previouswork
by the authors[1] hasshown that it is possibleto useevolu-
tionary algorithmsto automatethe processof generatingnear-
optimalPRFsetsthatminimisetheblind zonesfor a simplified
radarmodel. Thework did not addresstheproblemsof decod-
ability or totally blind velocities.Thispaperproposesa scheme
to automatetheselectionof precisePRFvaluesto optimiseall
theaspectsof radarperformancediscussedpreviously.
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Existing techniquesto resolve the ambiguitiesarebasedon
theChineseremaindertheoremandthecoincidenceor unfold-
ing algorithm. An excellentreview of mediumPRFradarand
PRF selectionis provided by Long and Harringer[2]. Con-
ventionally, theChineseremaindertheoremhasemployedpulse
repetitionintervals(PRI = 1/PRF)of integernumbersof range
cellsandsubsequentmodulomathematicswhich is sufficiently
simple to enablea hardware solution [3]. However, integer
mathematicsimposeslimitations on the number of suitable
PRFsand doesnot addressthe minimisationof blind zones.
The coincidencealgorithm is more computationallyintensive
for smallnumbersof targetsbut removescertainconstraintson
thePRFselection(sectionII-C). Thispaperproposesa scheme
basedon the coincidencealgorithmandutilisesa nearcontin-
uousrangeof PRFswhich createsa vastsearchspacewhich,
in turn, compoundsthe problemof PRFselectionbut enables
superiorsolutionsto exist. Sincean exhaustive searchof PRF
combinationsis notpossible,evolutionaryalgorithmshavebeen
employed. PRF set selectionis madeon the basisof resolv-
ing ambiguities,removingblind velocitiesandminimisingblind
zonesin therange/velocityspace.

Sectiontwo describesthe factorsinfluencingthe choiceof
PRFsetsfor a mediumPRFradarandof the proposedtiming
rationale.Sectionthreepresentsa radarmodelbasedon anair-
bornefire control typeradar. Thecrucial issuesof cluttermod-
elling and its influenceon the blind zonemap are discussed.
Sectionfour describesthe evolutionary algorithm and how it
is appliedto the problem. Finally, the fifth sectiondiscusses
the resultsin which the performanceof 8 and 9-PRFsched-
ulesareconsideredandperformancestatisticsgeneratedfrom
Monte-Carlotrials. The paperconcludesthat an evolutionary
algorithmis a powerful techniquefor optimisingthe selection
of PRFsandensuringthatamediumPRFradarcannotonly re-
solve rangeandvelocityambiguitiesbut maximiseits detection
performancein all aspects.Theresultsshow thata3 of 9 system
hasbetterblind zoneperformancethana 3 of 8 systemandby
usingtheevolutionaryapproach,solutionscanbefoundthatcan
still betransmittedwithin thedwell timeonthetarget.

I I . MEDIUM PRF RADAR

A. Introduction

Themain advantageof low-PRFradaris the ability to mea-
sure target range directly using simple pulse delay ranging.
However, low-PRFradarsuffersfrom a lack of Dopplervisibil-
ity, sincemainbeamclutterandundesiredslow moving targets
occupy mostof the spectrum.As a result,an excessive num-
ber of target returnsarerejectedalongwith mainbeamclutter.
Furthermore,low-PRFwaveformssuffer from severeDoppler
ambiguities. Low-PRFradaris bestsuitedto operationin the



absenceof groundclutter returns. The principle advantageof
high-PRF

�
radar, is the ability to detecthigh closing-ratetar-

gets,whoseDoppler frequenciesfall clearof sidelobeclutter,
in what is essentiallya noise-limitedenvironment. However,
detectionperformanceis poor in tail aspect(low closing-rate)
engagements,wheretargetscompetedirectly with theDoppler
spectrumof the sidelobeclutter. Furthermore,the highly am-
biguousrangeresponsecausesthesidelobeclutterto fold within
the ambiguousrange interval. Consequently, sidelobeclut-
ter can only be discardedby resolvingin Doppler frequency.
Medium-PRFradaris a compromisesolutiondesignedto over-
comesomeof the limitationsof both low andhigh-PRFradar.
By operatingabove thelow-PRFregion, theambiguousrepeti-
tionsof themainbeamclutterspectrummaybesufficiently sep-
aratedwithout incurringunreasonablerangeambiguities.Con-
sequently, the radar is betterable to reject mainbeamclutter
throughDoppler filtering without rejecting too many targets.
By operatingbelow the high-PRFregion, the radar’s ability to
contendwith sidelobeclutter in tail-chaseengagementsis im-
proved.Targetsmaynow beextractedfrom sidelobeclutterus-
ing a combinationof Dopplerfiltering andrangegating.

B. PRF Selection

EachPRFis characterisedby regionsof blind velocitiesand
rangesassociatedwith theDopplerfiltering of mainbeamclut-
ter andtime gatingof sidelobeclutterandassociatedeclipsing
losses.Theseblind zonesaredepictedin blackon a blind zone
map,asin figures1 & 2.

Fig. 1. Blind zonesfor a single,clutter limited, mediumPRFwaveform with
PRI67.26� s

Multiple burstsof pulsesarerequiredin orderto performtar-
getdetectionandto resolverangeandDopplerambiguities.This
is achievedby transmittinga numberof PRFswithin thedwell
time on target and sequentiallymeasuringand comparingthe
ambiguousinformationreceivedfrom every PRF. All theeight
PRFsfrom a3 of 8 systemmustbeableto betransmittedwithin
thedwell time,with eachPRFbursthaving 64 pulses(64-point
FFT)anda shortperiodof time in which to changeoverPRFs.

Fig. 2. Expandedview of Blind zonesof Fig. 1

Thepositionsof blind zonesvarywith PRF, therefore,by ap-
plying suitablePRFsin a multiple-PRFdetectionscheme,not
only may rangeandDopplerambiguitiesbe resolved,but also
the blind zonesmay be staggeredto improve target visibility.
Groundclutter returnsreceived throughthe antennasidelobes
may be strongenoughto overwhelmweaktarget signals,con-
sequentlyblind rangestendto worsenwith increasingrange,as
shown in figure3. Figure4 illustratesits effect on a blind zone
mapof a3 from 8 PRFschedule.
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Fig. 3. Comparisonof target return and sidelobeclutter for a single, noise
limited, mediumPRFwaveformwith PRI67.26� s

Conventionally, threePRFsarerequiredto beclearin range
andDopplerin orderto resolve rangeandDopplerambiguities
andto declarea targetdetection.However, Simpson[3] shows
that,againstscintillating targets,theprobabilityof detectionis
improvedsubstantiallyif thenumberof clearPRFsis increased
to four. In theblind zonemapof figure4, theblackshadingrep-
resentszoneswherefewer thanthreePRFsareclearand,hence,
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Fig. 4. Blind ZoneMapof TargetReturnsfor 8-PRFSchedule(2m� target)

wheretheradaris totally blind. Thegrey shadingrepresentsthe
near-blindzoneswherethreePRFsonly areclear. Whiteregions
representzoneswherefour or morePRFsareclear. Figure4
alsoindicatesblind zonesat low velocities(blackverticalstrip
on left) andranges(black horizontalstrip at bottomof figure)
which arepresentin all PRFsdue to the clutter rejection,but
their repetition,whichwasevidentin figure1, is now avoided.

Thenumberof PRFswithin aschedulemustbeselectedcare-
fully; too few andtheability to overcomerange-Dopplerblind
zoneswill behindered.With too many PRFs,then,depending
on the averagePRF, theremay be insufficient time to transmit
theentirePRFschedulewithin thedwell time on target. Typi-
cally, eightPRFsareemployedspanningaboutanoctave.

If a constantpeakpower andpulsewidth is employed, then
theaveragetransmittedpower andduty cycle will vary propor-
tionally. In an8-PRFschedule,thetotal dwell time on target is
divided into eightcoherentprocessingintervals. If thenumber
of pulsesprocessedduringeachinterval remainsconstant,asis
usualwhenFFT Dopplerprocessingis employed,thenthepro-
cessingtimeswill vary, but theprobabilityof detectionon each
segmentwill not be affected. Furthermore,asan FFT synthe-
sisesa fixed numberof contiguousdigital filters, the Doppler
resolutionwill varyproportionallywith PRF. FFTDopplerpro-
cessingwith avariabledutycycle is thenormandis themethod
assumedin thispaper.

Becauseof the relatively wide bandwidthsof the rejection
notches,thepossibilityremainsfor aPRFscheduleto bedecod-
ableandstill have somerejectionnotchoverlap; this is found
to bea particularproblemat thefirst repetitionsof theambigu-
ousDoppler intervals. The consequencesof suchoccurrences
arebandsof Dopplerfrequenciesin which theradaris blind, or
nearlyblind (threePRFsclearonly),atall ranges,therebyallow-
ing a target to approachat a particularvelocity with minimum
risk of detection. This is illustratedin figure 4 which shows
blindnessat all rangesat a velocity of 352m/s. Nothing can
bedoneabouttherejectionnotches,centredon zeroHz, which
blind the radarto crossingtargets. However, a test for more

thanfour (3 from 8) or five(3 from 9) rejectionnotchesoverlap-
pingoutsidethisregioncanensureagainstPRFschedulesbeing
completelyrange-blindatothertargetvelocities.

Theselectionof PRFsin amediumPRFsetis thereforebased
on thefollowing:
1. A spreadof valueswhich enabletheresolutionof rangeand
velocityambiguities,
2. theminimisationof blind zones,
3. removal of totally blind velocities,
4. ensuringthatthedutycycleyieldsthedesiredaveragetrans-
mittedpower,
5. constraintsimposedby the practical issuesof systemtim-
ings, e.g. transmitterduty cycle giving an upperboundon the
allowablePRF, andaveragePRIbeingconstrainedby thetarget
illumination time [4].

The finer the timing resolutionof the PRIs, the greaterthe
numberof PRIswithin thesearchspace.This in turn increases
thecomplexity of findinganoptimumPRFsetbut alsoimproves
theperformanceof thatoptimumsolution.

Sincethe minimisationof blind zonesis influencedby the
size of the target that is anticipatedwith respectto the levels
of sidelobeclutter rejectionrequired,it is imperative to have a
reliablemodelor dataon the natureof the clutter. The exact
clutter characteristicsare likely to be scenariospecificandso
onemusteitheroperateusingaPRFsetappropriateto averaged
conditionsor optimisethe PRFsetdynamically. SectionIII-B
describesthecluttermodelusedin thiswork.

C. System Timings and Decodability

Simpson[3] describesa schemeby which eachPRI is com-
prisedof anintegernumberof rangecellsof fixedwidth. There-
quirementfor thePRI to beanintegermultipleof therangecell
width stemsfrom theChineseremaindertheorem[5, Sec17.4]
which is appliedconventionallyfor ambiguityresolution. The
use of the Chineseremaindertheoremhighly constraintsthe
PRFselectionproblemandrestrictsPRFselectionby suchade-
greethatlittle accountof theminimisationof blind zonesis pos-
sible. In thework by Simpson,theradarmodelwasconstrained
further, leadingtoareducedsearchspace,andonlyallowedpoor
solutionsto beidentified[1].

Theradarmodelof thepresentstudyassumesthatpulseswill
beanintegernumberof cyclesof thefundamentalsystemclock
andthattherangeis sampledaccordingto thefundamentalclock
rate,theidealcontinuoussearchspaceis not realisable.

To ensuredecodability, theLowestCommonMultiple (LCM)
of any setof threePRIsfrom thesetof eight(56 possiblecom-
binations)mustbegreaterthanthetime delayof themaximum
rangeof interest. Similarly the LCM of any combinationof 3
PRFsmustbelessthanthetotalDopplerbandwidth.

Additionally, with the Chineseremainderalgorithm,all the
56 combinationsof threePRIs/PRFsin thesetof eightmustbe
co-prime,i.e. the lowestcommonmultiple of eachsetof three
PRIs/PRFsmustequaltheproductof thethreePRIs/PRFs,con-
strainingthesetof valid PRI schedulesdramatically. Theseex-
tra constraintsare not a requirementof the coincidencealgo-
rithm [2] andso the coincidencealgorithmis assumedin this
paper. Thecoincidencealgorithmoperatesby takingthetarget
returnsin a PRI andrepeatingthemuntil the maximumrange
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hasbeencovered.For asinglePRI,thiswill givemany rangesat
whichatargetmaybepresent.Theprocessis repeatedfor all the
visible PRIsandtheresultsoverlaid. If a truetarget is present,
it will appearin thesamepositionin all visible PRIs(yet may
notbedetected).Likewise,thetrueDopplermayberesolvedin
thefrequency domain.Whenaccountingfor rangeandDoppler
the processcan be performedwith a two-dimensionalmap in
range-Dopplerspace.

The decodabilitytest above is satisfactory for an infinitely
shortpulse. In practicethis is not thecase.A bettercheckfor
decodabilityis to allow for the width of the pulse,andalsoan
allowancefor therangeextentof thetarget.Thishelpsto avoid
ghosting wheretwo PRIsmayalignpartlywith anoisedetection
occurringcorrespondinglyin a third PRI,giving theappearance
of a true target. A simpleprocesswhereextendedpulsesare
placedin arraysat repetitionsof thePRI for eachPRI anda co-
incidencecheckperformedwill determinepracticaldecodabil-
ity easily. In this paper, a compressedpulselengthof �����	� s is
extendedto �
���	� s for the decodabilitycheck. Theextra �����	� s
allows for thepulseextensionresultingfrom a 30 metretarget
andthereforereducesthechancesof ghosting.If theextra time
addedto the pulseis increased,it becomesharderto identify
fully decodablePRI schedules,and thereforevery clearblind
zonemaps,but doesimprove theresistanceto theformationof
ghosts.

I I I . THE RADAR MODEL

A. Introduction

A radarmodelbasedon an airbornefire control type appli-
cationwasderived to trial the fitnessof PRFsets. The model
assumes10GHzoperation,64-pointFFT processing,linearFM
pulsecompressionachieving a compressionratio of 14andthat
platformmotioncompensationis applied.Themaximumtarget
velocity with respectto thegroundwastakenas1500m/sand
themaximumrangewastakento be185km (100nmi). These
andotheroperationalcharacteristicsaresummarisedin TableI.
It is intendedthatthemodelshouldberepresentativeof thetypes
currentlyin serviceor aboutto enterservice.Clutterwasmod-
elled andresultedin a requirementto rejectmainbeamclutter
andgroundmoving targetsovera band ���� ��� kHz. Simulations
wereperformedagainsta 5m� targetandresultin considerable
blindnessat long rangesdueto overwhelmingsidelobeclutter.
Larger targetsarelesseasilyswampedby sidelobeclutter and
detectionis maintainedatgreaterranges.

B. Clutter Modelling

Figure 5 shows a typical range-Dopplerclutter map for an
airbornefire control radarscenario.Thecodeusedto calculate
theclutterresponseis basedon thecodeprovidedin [6].

Due to the shallow depressionangle of the antenna(6 ˚
down), thestrongmainlobeclutterreturnis seenat all ambigu-
ousranges.If platformmotioncompensationhadbeenincorpo-
ratedinto the clutter mapthenthe mainbeamclutter would be
centredon Dopplerfilter bin zero. Thecharacteristicsawtooth
profile of thesidelobereturnis evident throughouttheDoppler
interval. The strongaltitudeline is alsovery clear. The clut-
ter mapfor eachPRI will be differentaseachPRI containsa

TABLE I

SUMMARY OF THE RADAR MODEL’ S CHARACTERISTICS

Parameter Value

Carrierfrequency 10GHz
Minimum PRI 35 � s
MaximumPRI 150 � s
Transmittedpulsewidth 7 � s
Compressedpulsewidth 0.5 � s
Compressiontechnique Linear FM 2 MHz chirp

bandwidth
FFTsize 64bins
Rangeresolution 75m
Blind rangedueto eclips-
ing

15 rangecells

Duty cycle Variable(0.2peak)
Antenna3dBbeamwidth 3.9˚
Antennascanrate 60˚ /s
MaximumGMT velocity
rejected

25m/s

Mainlobe clutter/GMT
rejection notch band-
width

 1.67kHz

MaximumtargetDoppler ������ kHz (1500m/s)
Maximum detection
range

185.2km (100nmi)

Clutter backscattercoef-
ficient

-20dB

Targetradarcross-section 5 m�

differentnumberof rangebins.
Thesidelobeclutterprofilesusedin thecalculationsarebased

ononly therangeprofilesof theappropriatecluttermapsfor the
PRIsused. The Dopplerbins areaveragedfor eachmapafter
notchingout the mainbeamclutter return to give a good one
dimensionalapproximationof thefull cluttermap.

IV. EVOLUTIONARY ALGORITHMS AND THEIR

APPLICATION TO THE PROBLEM

A. Introduction

EvolutionaryAlgorithms areoptimisationprocedureswhich
operateover a numberof cycles(generations)andaredesigned
tomimic thenaturalselectionprocessthroughevolutionandsur-
vival of thefittest [7], [8]. A population of � independentin-
dividuals is maintainedby the algorithm,eachindividual rep-
resentinga potentialsolutionto the problem. Eachindividual
hasonechromosome. This is thegeneticdescriptionof theso-
lution and may be broken into � sectionscalledgenes. Each
generepresentsa singleparameterin the problem,thereforea
problemthathaseightunknownsfor example,would requirea
chromosomewith eightgenesto describeit.

Thethreesimpleoperationsfoundin nature,naturalselection,
matingandmutationareusedtogeneratenew chromosomesand
thereforenew potentialsolutions. In this paper, new chromo-
somesweregeneratedby a combinationof mating (otherwise
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Fig. 5. Range-Dopplercluttermapfor typicalmediumPRF( ��������� s)

known ascrossover) andapplyingGaussiannoise,with a stan-
darddeviation that reducedwith eachgeneration,to eachgene
in eachchromosome.Eachchromosomeis evaluatedat every
generationusinganobjective function thatis ableto distinguish
goodsolutionsfrom badonesandto scoretheir performance.
With eachnew generation,someof the old individualsdie to
makeroomfor thenew, improvedoffspring.Despitebeingvery
simpleto code,requiringno directionalor derivative informa-
tion from theobjective functionandbeingcapableof handling
largenumbersof parameterssimultaneously, evolutionaryalgo-
rithmscanachieveexcellentresults.

A flowchart representingthe whole processis given in fig-
ure6. Theradarmodelacceptsa chromosomefrom theevolu-
tionaryalgorithmanddecodesit into a setof PRIs.Operational
parametersarepassedto thecluttermodel,whichin turnreturns
clutterdata.A blind zonemapis createdandtargetvisibility is
determined.The raw visibility datais thenpassedbackto the
evolutionaryalgorithmasthe objective valueto drive the evo-
lutionaryprocess.A new generationof PRFsis thenproduced
andtheprocessrepeated.

B. Applying evolution to the problem

Earlier work by Davies and Hughes[1] comparedevolu-
tionary algorithmsand exhaustive searchtechniquesto select
mediumPRF schedulesto minimise blind zones. They con-
cludedthat evolutionary algorithmsoffered an efficient alter-
native to conventionalsearchmethodsand that they were ca-
pableof finding the optimum, or nearoptimum, solutionsin
a fraction of the time taken by the exhaustive searchmethod.
The studyalsosuggestedthat the speedandflexibility of evo-
lutionaryalgorithmtechniquesofferedthepotentialfor a radar
to selectPRF schedulesoptimally from a vastset of possible
solutions,in nearreal-time.Theblind-zonemapsin this paper
cover a range-Dopplerspacethat is over six times larger than
the spaceconsideredby Davies and Hughesand hasa vastly
improvedcluttermodelandfifty timesasmany PRIsto choose
from, whenusingequivalentradarmodels(11501comparedto

100 initial trial
PRF sets

EA Radar Model

Decode 
to PRFs

Radar Model

Blind Zone
Map

Clutter Model

Mutation/
Crossover of

Create 50
Copies

Select Best 50
out of 100

copies

Fig. 6. Flowchartof optimisationprocess

230).

C. Evolutionary coding strategies

In thepresentstudywe optimisetheselectionof PRIsusing
a real-valueevolutionaryalgorithmto generatenearcontinuous
PRIsandthecoincidencealgorithmto resolveambiguities.This
schemeensuresthata vastnumberof PRIsareavailableto the
optimisationprocessandthat the timings of eachPRI may be
derived from a 100MHz clock. With sucha vastsearchspace
available to the optimisationprocess,it hasbeenpossibleto
selectPRI setsfor ambiguityresolution,minimisationof blind
zonesandtheremoval of blind velocities.

Eachchromosomeforms a trial solutionto the problemand
consistsof a set of eight (or nine) genesthat lie in the inter-
val � �
���� . Thesegenesarethendecodedinto a PRI schedule,
which is thenusedwithin aradarmodelto assesstheschedule’s
qualityandto ensurethattheschedulemeetscertainconstraints.
Thechromosomeis transformedinto a PRI setby first generat-
ing a set, ! , containingall possiblechoicesof PRI (11501in
the examplein this paper). The first PRI is chosenas the "$#&%
PRI with " givenby the total numberof availablePRIs( '(' !)'*' )
multiplied by thevalueof thefirst gene,giving a choiceof 1 in
11501. The PRI chosenis removed from the set ! . The sec-
ondPRI is chosenin a similar way, this time beinga choiceof
1 of 11500.Theremainingset ! is now checkedandany PRIs
thatarenot decodablein both rangeandDopplerwith the two
PRIschosen,or whichmayleadto severeghostingareremoved
from theset ! . Any PRIsthatwouldalsoleadto a blind veloc-
ity arealsopruned.Thethird andsubsequentPRIscannow be
chosensimilarly, given the reducedsetof ! , andreducingthe
setaccordinglyafterchoosingeachPRI.For PRIsfour onwards,
decodabilitymustbecheckedbetweeneachPRIin theset! and
eachcombinationof pair of thePRIsalreadychosen.This pro-
cesswill ensurethatthePRI setis fully decodable.If '*' !)'*',+-�
beforeall thePRIsarechosen,theobjective is setto be totally
blind.

The objective function providesa measureof how well an
individual performsin the problemdomain[7]. In this case,
the objective function is the total areaof the blind zonemap
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(in metresHertz)with four or morePRFsclear. Thedecoding
processhasalreadyensuredthat thePRFsetis fully decodable
with reducedghostingandnohasblind velocities.

A simpleevolutionaryprogramme[8] with a basepopulation
of �.+/��� trial solutionswasusedastheevolutionaryengine.
Theevolutionaryprogrammeoperatesby creating01+2��� new
trial solutionsat eachgeneration,andevaluatingthemfor blind
zoneperformance.Thebest50overall from the 0435� setare
thenchosenfor thenext generation.In thisparticularalgorithm,
aninitial populationof 100trial solutionswasused,of whichthe
best50werechosenfor generation1. Evolutionaryprogrammes
areverysimple,yetverypowerful optimisationalgorithms.

To createthe 50 new solutionsa typical evolutionary pro-
grammecycle of crossover and mutationwas applied. First
the50chromosomesremainingin thepreviousgenerationwere
copied. Each of the 50 solutionshad a 70% chanceof be-
ing crossedduring the copy with anotherchromosomecho-
sen at randomfrom the population(with replacement). The
70% probability of crossover was chosenas it provided rea-
sonablyconsistentconvergenceperformance,althoughthevalue
of the parameteris not critical andvaluesin the range50% to
90% areunlikely to provide a significantdifferencein perfor-
mance.If crossover wasto beperformed,realvaluedinterme-
diatecrossover [7], asdetailedin equation1, was usedto re-
combinethe genes,where 687�9 and 68:;9 aregene " of the new
chromosome< andthechromosome= , with whichto cross.The
value >�? is auniformrandomnumberin therange[0,1], selected
anew for eachgene.Intermediatecrossover is a standardtech-
niqueandwill producenew solutionsthataresimilarto boththe
parentchromosomes.For example,if thechromosomes

<@+/� �����A��� BA�
� �A�
� CD���E�A��� �D��� FD���*�HG
and

=I+J� �����A���E�K��� BA�
� CD�
� FD��� L �����A�����MG
wereto becombinedwith crossover, first arandomnumbercor-
respondingto eachgenelocationmustbegeneratedandthen(1)
applied.If thesetof randomnumberswas

>8+J� �
� BD�
� �D��� BD�����A��� �A�
� BN�
� �A�
� �OG
thentheresultingchild chromosomewouldbe

P +/� ��� L�LN�����Q�A�������A�
� C,�K�
� C,BA�
� ���D�������K���*���MG
68R$9S+T687U9V32W��,� �Q> ?VX �������, UWY68:Y9 X 687�9� Z"[+/�\�]����� (1)

Gaussianmutationwasthenappliedto eachgeneby addinga
randomnumberdrawn from a zero-meanGaussiandistribution
with an initial standarddeviation of 0.125.Theinitial standard
deviationis chosenas1/8of therangeof thegenevalues.A new
randomnumberis drawn for eachgenein eachchromosome.
Thealgorithmwasforcedto convergeby reducingthestandard
deviationof theGaussiandistributionusedfor themutationpro-
cessby multiplying by a factorof 0.9everygeneration.Thusas
thealgorithmprogresses,thesizeof therandomnumbersadded
to thegenesreducesandforcesthesearchto berefinedin order
to provide morerepeatableresultsin a limited numberof gen-
erations. In the first few generationsof the evolutionaryalgo-
rithm, themutationsarelargeandsoawidesearchis performed

TABLE II

PERFORMANCE OF EVOLUTIONARY ALGORITHM OVER 100 TRIALS FOR 3

OF 8 DECODING.

Best 58.37%
Worst 59.91%
Mean 59.01%

Median 59.02%^ 0.28%

acrossthePRIsearchspace.Thereductionfactorof 0.9reduces
the standarddeviation of the mutationsquite quickly, so after
around30 generations,the mutation,and thereforethe global
search,is having little effect. Thesearchdirectionis controlled
moreby crossover andthereforelocal exploitationof the opti-
misationsurfaceis performed.

The algorithmwasterminatedafter 100 generationsandthe
bestsolutionselected(i.e. bestblind zoneperformance)asthe
final PRI set for use. This size of populationand numberof
generationsprovideda reasonablenumberof samplesolutions
from theproblemdomainwithout incurringunmanageablepro-
cessingtimes.

D. Summary

The maximumtransmitterduty cycle (20% ) constrainsthe
maximumacceptablePRF to be 28.57kHz. The width of the
mainbeamclutter rejection notch ( ���� ��� kHz) constrainsthe
minimum PRF to be 6.67kHz,allowing the clutter to occupy
up to a maximumof half the PRF. The PRI constraints,com-
binedwith thechromosometransformationalgorithmmeansall
PRI setsaredecodable,retaingoodtargetvisibility andarenot
proneto blind velocities. Repeatedgenerationsof the evolu-
tionaryalgorithmoptimisationprocesscontinueto refinetarget
visibility by minimising blind zones,subjectto blind velocity
andghostingchecks.

V. RESULTS

A. Introduction

Trials of the radarmodel and evolutionary algorithm were
conductedwith eachexperimenthaving a populationof 50 PRI
schedulesover100generations,for a �Q_`� target.Theeffective-
nessof theevolutionaryalgorithmroutinewasinitially assessed
searchingfor optimum8-PRFschedules.Oncetheability of the
evolutionary algorithm to find optimum, or near-optimum, 8-
PRFscheduleswasconfirmed,the evolutionaryalgorithmwas
taskedwith searchingfor optimum9-PRFschedules.

B. Optimum 8-PRF Schedules

Eachof the experimentswasrepeated100 timesin orderto
generatestatisticson therepeatabilityof theevolutionaryalgo-
rithm results.TableII showsthestatisticsfor the3 of 8 problem,
with the performanceindicatedby the percentageof the blind
zonemapthathasfewer thanfour PRFsclear.

Figure7 showstheblind zonemapfor thebest3 of 8 solution
found.TableIII showsthePRIsused,themeanPRI,meanduty
cycleandrange-Dopplerareathatis blind. For an8 PRFsched-
ule, the meanPRI mustbe lessthan100.4� s (assuming65ms
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TABLE III

PRI SET FOR BEST 3 OF 8 STRATEGY ( � S)

63.11 69.97 77.07 81.31 90.06 99.90 109.75119.00
MeanPRI 88.77� s
Meandutycycle 7.89%
Peakdutycycle 11.09%
Min range/Dopplerblindness(m.Hz) ��� �����QF�a�3)���

TABLE IV

PERFORMANCE OF EVOLUTIONARY ALGORITHM OVER 100 TRIALS FOR 3

OF 9 DECODING.

Best 53.74%
Worst 55.02%
Mean 54.46%

Median 54.51%^ 0.26%

dwell time and1.7mslost per PRI in changeover). Themean
PRI identifiedcouldeitherbeusedwith a scanrateof 66.0˚ /s,
or deadtime/ built-in-testcouldbeaddedattheendof thesetof
PRIs,asis usedin many currentradarsystems.Oftenthescan
rateis determinedby subsequentprocessingbut with phasedar-
ray technologybecomingmore available in airbornesystems,
thepressureto allow a variablescanrateis increasing.

Fig. 7. Blind zonemapfor best3 of 8 solution,5 bc� target

C. Optimum 9-PRF Schedules

TableIV shows thestatisticsfor the3 of 9 problem,with the
performanceindicatedby thepercentageof theblind zonemap
thathasfewer thanfour PRFsclear.

Figure8 shows the blind zonemapfor the best3 of 9 solu-
tion found. TableV shows thePRIsused,themeanPRI,mean
duty cycle andrange-Dopplerareathat is blind. For a 9 PRF
schedule,the meanPRI mustbe lessthan86.3� s. The mean
PRI identifiedcorrespondsto ascanrateof 60.8˚ /s.

TABLE V

PRI SET FOR BEST 3 OF 9 STRATEGY ( � S)

65.0065.6272.4179.9683.9288.4493.30102.84112.41
MeanPRI 84.88� s
Meandutycycle 8.25%
Peakdutycycle 10.77%
Min range/Dopplerblindness(m.Hz) F��E�	Cd�	�,ae3@F

Fig. 8. Blind zonemapfor best3 of 9 solution,5 b � target

D. Evolutionary algorithm Performance

With eachrun of the searchroutine,differentnear-optimum
PRFschedulesarefound,althoughtherange-Dopplerblindness
variesmarginally (by about1-2% ). This implies that the PRI
searchspacecontainsmany local optimumsolutionswith sim-
ilar range-Dopplerblindnessperformances.The averageand
peakduty cyclesof thesesolutionsarefound to be consistent
with thoseof somemodernfieldedradars.

With the optimisationbeingperformedagainstsmall targets
with respectto the clutter, large black areasoccurtowardsthe
topof theblind-zonemapdueto thesidelobeclutterlevels.With
larger targets,the long-rangeregion of the blind zonemap is
clearer, asdemonstratedin figure9 which is calculatedfor a 10
_f� target. Figures7, 8 & 9 all show blind zonemapsthat are
fully decodableandhavenoblind ranges.

With codethat hasnot beenoptimisedfor speedand on a
moderndesktopcomputer(1GHz Pentium3), eachrun of the
evolutionaryalgorithmtakesapproximately3 hours.This is re-
ducedto approximately70 minuteson a DEC Alpha 667MHz
EV67 processor. By optimising the codefor speedand with
fasterprocessingbecomingavailableeachyear, theprocessing
timesareexpectedto bereducedsignificantlyin thenearfuture.

E. Number of PRFs in the Schedule

Typically, 8-PRF schedulesare employed in fielded radar
systems.Eight PRFsaretraditionally thoughtto be a reason-
ablecompromisebetweenthe requirementto overcomerange-
Doppler blindnessand the ability to transmit the entire PRF
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Fig. 9. Best3 of 9 schedulebut with 10b � target

schedulewithin the dwell time on target. Moreover, search-
ing for longerPRF schedulesusing conventionalsearchtech-
niquesbecomesincreasinglymoredifficult. However, thisstudy
hasdemonstratedthe efficiency andpower of evolutionaryal-
gorithm techniqueswhenappliedto this typeof combinatorial
problem.Not only is theevolutionaryalgorithmableto find op-
timumor nearoptimum8-PRFscheduleswithin reasonabletime
framesbut theevolutionaryalgorithmis ableto find optimumor
near-optimum9-PRFscheduleswith similarefficiency.

VI . CONCLUSIONS

Theuseof theChineseRemainderTheoremfor decodingre-
turnsfrom eachburst constrainsthe choiceof PRFto suchan
extent that PRF setsmust be selectedsolely for decodability.
Optimisationof PRFsetsfor otherissuesis notpractical.

Theuseof thecoincidencealgorithmpermitsPRIsto bese-
lectedwith theresolutionof theclock period(=10nsin our ex-
ample).This improvedresolutionincreasesthenumberof PRIs
but enablesselectiontobeoptimisedfor decodability, blindness,
blind velocitiesandghosting.

Theevolutionaryalgorithmcanselectnear-optimalPRFsets
efficiently, with modestcomputingeffort andproducea signifi-
cantimprovementin radardetectionperformance.The‘quality’
of eachsetis basedonmodelsof airbornefire controlradarand
associatedclutter and so eachPRF set is application/scenario
specific.

Repeatedruns of the evolutionary algorithm identify near-
optimal PRF sets which differ marginally from each other.
Theserepeatsindicatetheexistenceof severalsimilar local op-
tima in the problemspaceand the ability of the evolutionary
algorithmto find them.

The evolutionary algorithm has optimisedthe selectionof
3 of 9 scheduleswhichmaybetransmittedwithin thetargetillu-
minationtime. Although9-PRFschedulesaremoredifficult to
transmitwithin thedwell time,theadvantagegainedis amarked
improvementin range-Dopplerblindness.Typically, with a5m�
RCStarget andthe particularclutter characteristicsappliedin

the model,a 4.6% improvementin total range-Dopplerblind-
nessis achievedoveran8-PRFsystem,with themostnoticeable
improvementoccurringat the mediumdetectionranges(60 to
120Km), beyondwhichhighsidelobeclutterlevelsarethedom-
inantcauseof blindness.Of all the near-optimumPRFsched-
ulesfound,the9-PRFscheduledetailedin TableV hasthebest
blind zoneperformanceagainstthestandard5m� target.

Theevolutionaryalgorithmcouldbedevelopedto run much
quicker; evento theextentof optimisingtheselectiondynami-
cally to run in realtime.
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