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Abstract

Gain scheduled control is one very useful control technique for linear

parameter-varying (LPV) and nonlinear systems. A disadvantage of gain-

scheduled control is that it is not easy to design a controller that guaran-

tees the global stability of the closed-loop system over the entire operating

range from the theoretical point of view. Another disadvantage is that the

interpolation increases in complexity as number of scheduling parameters

increases. As an improvement, this paper presents a gain-scheduling control

technique, in which fuzzy logic is used to construct a model representing a

quasi-LPV or a nonlinear missile and to perform a control law. The fuzzy

inference system is generated using a multi-objective evolutionary algorithm

to optimise the performance characteristics of the plant.
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1 Introduction

Missiles are required to operate over an expanded flight envelope to meet the

challenge of highly manoeuvrable targets. In such a scenario, an autopilot derived

from linearisation about a single flight condition will be unable to achieve suitable

performance for the whole envelope. Thus, there is an inherent tension in autopilot

design between the nonlinearity of the missile and the linearity of the controller

[1].

Mathematical representation of nonlinear missile dynamics lends itself to sev-

eral interpretations. The interpretations aim at deriving models which adequately

capture missile behaviour and are practical for systematic control design.

One of the most popular methods for applying linear time-invariant (LTI) con-

trol theory to time-varying and/or quasi-linear systems is gain scheduling [2]. This

strategy involves obtaining Taylor linearised models for the plant at finitely many

equilibria (“set points”), designing an LTI control law (“point design”) to satisfy

local performance objectives for each point, and then adjusting (“scheduling”)

the controller gains in real time as the operating conditions vary. This approach

has been applied successfully for many years, particularly for aircraft and process

control problems.

Despite past success of gain scheduling in practice, until recently little has

been known about it theoretically as a time-varying and/or quasi-linear control

technique. Also, determining the actual scheduling routine is more of an art than

a science. While ad hoc approaches such as linear interpolation and curve fitting

may be sufficient for simple static-gain controllers, doing the same for dynamic

multi-variable controllers can be a rather tedious process.

An early theoretical investigation into the performance of parameter-varying

systems can be found in [3]. During the 1980’s, Rugh and his colleagues de-

veloped an analytical framework for gain scheduling using extended linearisation

[2]. Also, Shamma and Athans [4] introduced linear parameter-varying (LPV)

systems as a tool for quantifying such heuristic design rules as “the resulting pa-

rameter must vary slowly” and “the scheduling parameter must capture the non-

linearities of the plant”. Shahruz and Behtash [5] suggested using LPV systems

for synthesising gain-scheduled controllers.

In this paper a fuzzy pole-placement control design technique is applied to the

autopilot design for the missile. The missile motion is modelled to be quasi-linear

with unknown parameters. Based on the quasi-linear model, we adopt for design

procedure the fuzzy pole-placement method. The performance objectives related

with the transient, i.e. settling time, rising time, peak overshoot are achieved with
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the fuzzy pole-placement. However, since our problem is one of tracking, an

additional performance objective, that of zero steady-state error should be taken

into account. This can be achieved with an integral term in forward loop. In

this scheme, unknown parameters are estimated and based on these estimates,

control parameters are updated. Computer simulations show that this approach is

very promising for the motion control design for missiles, which are highly quasi-

linear in dynamics. The optimisation of the fuzzy system is performed using a

multiobjective evolutionary algorithm [6].

Section 2 details the missile model and coefficients, section ?? describes the

design of the controller and the structure of the fuzzy inference system. The mul-

tiobjective evolutionary algorithm is detailed in section 7. Section 8 shows typical

results from the optimisation process and section 9 concludes.

2 Quasi-linear parameter varying missile model

Missile autopilots are usually designed using linear models of nonlinear equa-

tions of motion and aerodynamic forces and moments [7], [8]. The objective of

this paper is the design of a lateral acceleration autopilot for a quasi-linear param-

eter varying missile model. This model describes a reasonably realistic airframe

of a tail-controlled tactical missile in the cruciform fin configuration (Figure 1).

The aerodynamic parameters in this model are derived from wind-tunnel measure-

ments [9].

p

r

u

v

w
q

x

yz

Figure 1: Airframe axes.

The starting point for mathematical description of the missile is the following

nonlinear model [10], [9] of the horizontal motion (on the xy plane in Figure 1):

v̇ = yv(M,λ, σ)v − Ur + yζ(M,λ, σ)ζ
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Table 1: Coefficients in nonlinear model (1).

Interpolated formula

Cyv 0.5[(−25 +M − 60|σ|)(1 + cos 4λ)+
(−26 + 1.5M − 30|σ|)(1− cos 4λ)]

Cyζ 10 + 0.5[(−1.6M + 2|σ|)(1 + cos 4λ)+
(−1.4M + 1.5|σ|)(1− cos 4λ)]

Cnr
−500− 30M + 200|σ|

Cnv
smCyv , where:

sm = d−1[1.3 + 0.1M + 0.2(1 + cos 4λ)|σ|+
0.3(1− cos 4λ)|σ| − (1.3 +m/500)]

Cnζ
sfCyζ , where:

sf = d−1[2.6− (1.3 +m/500)]

=
1

2
m−1ρVoS(Cyvv + VoCyζζ)− Ur

ṙ = nv(M,λ, σ)v + nr(M,λ, σ)r + nζ(M,λ, σ)ζ

=
1

2
I−1
z ρVoSd

(1

2
dCnr

r + Cnv
v + VoCnζ

ζ
)

. (1)

where the variables are defined in Figure 1.

Here v is the sideslip velocity, r is the body rate, ζ the rudder fin deflec-

tions, yv, yζ semi-non-dimensional force derivatives due to lateral and fin angle,

nv, nζ , nr semi-non-dimensional moment derivatives due to sideslip velocity, fin

angle and body rate. Finally, U is the longitudinal velocity. Furthermore, m = 125
kg is the missile mass, ρ = ρ0 − 0.094h air density (ρ0 = 1.23 kgm−3 is the

sea level air density and h the missile altitude in km), Vo the total velocity in

ms−1, S = πd2/4 = 0.0314 m2 the reference area (d = 0.2 m is the refer-

ence diameter) and Iz = 67.5 kgm2 is the lateral inertia. For the coefficients

Cyv , Cyζ , Cnr
, Cnv

, Cnζ
only discrete data points are available, obtained from wind

tunnel experiments. Hence, an interpolation formula, involving the Mach number

M ∈ [0.6, 6.0], roll angle λ ∈ [4.5◦, 45◦] and total incidence σ ∈ [3◦, 30◦], has

been calculated with the results summarised in Table 1.

The total velocity vector ~Vo is the sum of the longitudinal velocity vector ~U
and the sideslip velocity vector ~v, i.e. ~Vo = ~U + ~v, with all three vectors lying on

the xy plane (see Figure 1). We assume that U ≫ v, so that the total incidence

σ, or the angle between ~U and ~Vo, can be taken as σ = v/Vo, as sin σ ≈ σ for

small σ. Thus, we have σ = v/Vo = v/
√
v2 + U2, so that the total incidence is a

nonlinear function of the sideslip velocity and longitudinal velocity, σ = σ(v, U).
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The Mach number is obviously defined as M = Vo/a, where a is the speed of

sound. Since Vo =
√
v2 + U2, the Mach number is also a nonlinear function of

the sideslip velocity and longitudinal velocity, M = M(v, U).
It follows from the above discussion that all coefficients in Table 1 can be in-

terpreted as nonlinear functions of three variables: sideslip velocity v, longitudinal

velocity U and roll angle λ.

For an equilibrium (v0, r0, ζ0) it is possible to derive from (1) a linear model

in incremental variables, v̄
.
= v− v0, r̄

.
= r− r0 and ζ̄

.
= ζ − ζ0. In particular, for

the straight level flight (with gravity influence neglected), we have (v0, r0, ζ0) =
(0, 0, 0), so that the incremental and absolute variables are numerically identical,

although conceptually different.

3 Quasi-linear parameter-varying representation

The missile model introduced in Equation (1) is nonlinear with explicit state de-

pendence, v, directly proportional to σ. The technique presented in this paper, gain

scheduling, Rugh et al [?], start from the quasi-linear parameter-varying form of

this model.

Assume the nonlinear model of the form,

ẋ = f(x, u, q)
y = h(x, u, q), (2)

where the x is the state vector, u is the control input of the system, y is the output

and q an exogenous parameter.

The set, E , of operating points (equilibrium points) of Equation (2) depends

on parameter q ∈ R and is denoted as

E = {(x0, u0, q) ∈ X × U ×R| f(x0, u0, q) = 0}. (3)

The set of equilibrium for the missile is defined as E = {(v0, r0, ζ0, U0, λ0) ∈
X ×U ×R| f(v0, r0, ζ0, U0, λ0) = 0} where f(v, r, ζ, U, λ) represents the non-

linear differential Equation (1). The parameter p = (v, U, λ) is introduced and it

uniquely determines an operating point (equilibrium point) of the system (a point

of E). This parameter p depends on the state variable v and on the external param-

eters U and λ.

Since the term yζ(p)δζ will be small, due to the small lateral force generated

Note that the control of the lateral acceleration (latax), av, can be approximately
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performed via the control of the lateral velocity, av = v̇ + Ur ≈ yvv, since the

term yζζ will be small, due to the small lateral force generated by the tail fins

compared to the tail fin moment.

Assuming incremental state variable, δx = x − x0(p), control input, δu =
u − u0(p), and output, δy = y − y0(p), Taylor linearisation of the nonlinear

system (2) at an operating point of E , uniquely defined by parameter p, leads to

δẋ =
∂f

∂x |p
δx+

∂f

∂u |p
δu

δy =
∂h

∂x |p
δx. (4)

For an equilibrium (v0, r0, ζ0) uniquely defined by p, the Taylor linearisation of

(1) gives a linear model in incremental variables, δv
.
= v−v0, δr

.
= r−r0 and δζ

.
=

ζ − ζ0. In fact, dependence on p states a quasi-linear parameter-varying (QLPV)

form (5), with p comprises both a state variable, v and external parameters, U and

λ.

δ̇v =

(

∂yv
∂v

v + yv +
∂yζ
∂v

ζ

)

|p

δv − U|pδr + yζ |pδζ

δ̇r =

(

∂nv

∂v
v + nv +

∂nr

∂v
r +

∂nζ

∂v
ζ

)

|p

δv + nr |pδr + nζ |pδζ (5)

δy = δv.

In particular, for the straight level flight, we have (v0, r0, ζ0) = (0, 0, 0), so that the

incremental and absolute system forms are identical even if conceptually different,

see Equation (6).

[

δ̇v
δ̇r

]

=

[

yv(p) −p2
nv(p) nr(p)

] [

δv
δr

]

+

[

yζ(p)
nζ(p)

]

δζ

δy = [ 1 0 ]

[

δv
δr

]

. (6)

4 Performance with pole placement via LMI

Before the desired level of performance is described, it has to be noticed that the

missile is limited by both its natural behaviour and its actuators performance. The

actuators limit the steering of the missile and consequently its performance. These

actuators are modelled as second order systems, their characteristic is given by
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their angle range, ±0.3 rad, and their frequency response, 250 rad/s (frequency

about 40 Hz). It has been chosen to keep the response of the pole placement

controller within these constraints so that the actuators do not operate above their

cut off frequency. This is achieved by limiting the frequency response of the pole

placement controller less than 125 rad/s (about 20 Hz) and keeping the damping

ratio above the critical value, for actuator fatigue and power consumption reasons.

Additionally, the desired performance requires that the system performs within

0.1 s of maximum rising time.

The resulting D-stability region, where the poles have to stay in, is the inter-

section of three primitives: a cone in the left half-plane with half-angle π/4 and

tip at (0, 0) (for the damping), the half-plane left to −40 (for the time rising) and

the half-plane right to −87.5 (for the cuff off frequency). The physical angle range

of the fins is not taken into account in the design process.

�

4

Re(z)

Im(z)

−40−87.5

Figure 2: The performance of the pole placement controller for the Horton missile

is presented as a D-stability region. All the poles of the system belong to the

trapezoid area.

Modified Lyapunov equations characterise this D-stability region where they

turn the classic Lyapunov equation into a family of Linear Matrix Inequalities. In

the following, the feasibility of these is solved with the LMI Toolbox, Gahinet et

al [?] for MATLAB. Assuming a region D = {z ∈ C| L + Mz + MT z̄ < 0},

the matrix A′ would have all its eigenvalues in this region D, if there exists a

positive-definite symmetric matrix X satisfying the following LMIs (7).

∀i, j λi,jX + µi,jA
′X + µj,iXA′T < 0, (7)

where λi,j and µi,j represent respectively the matrix coefficients of L and M . For

system (5), it has been applied in the case of state feedback control design where
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the matrix A′ is represented by the closed-loop matrix A+BK. It brings (8) with

both Y = KX and X positive-definite symmetric.

∀(i, j) λi,jX + µi,jAX + µj,iXAT + µi,jBY + µj,iY
TBT < 0, (8)

5 Gain scheduling

5.1 An overview

Figure 3 shows a block diagram description of gain scheduling. The linear parameter-

varying system constitutes a family of systems and for each of them a LTI design

is carried on. The gain feedback controller is scheduled by the parameter p and

becomes a gain scheduling controller. From a discrete family of gain feedback

controllers first computed to guarantee performance at some operating points (re-

lated to p) and valid in its neighbourhood; the linear interpolation of these con-

trollers carries over the performance of the closed-loop system on the whole flight

envelope. The controller provides an incremental control input δζ and its total

control to the plant is recovered as ζ(p) = ζ0(p) + δζ .

+

−

R

point
Operating

Lateral velocity

and rate

demands
a

�

a

v

u = �

(M;�)

Plante

Missile [v,r]
[v,r]

latax

v

Nonlinear

Function

latax

demand

Scheduled
controller

K(p)

External parameters

Figure 3: Block diagram description of the gain scheduling controller.

5.2 Design of the sideslip velocity autopilot

Section 3 described the Horton missile in a linearised form and from Equation (5)

the incremental closed-loop system is derived for state feedback as follows,

δẋ = A(p)δx+B(p)δu = [A(p) +B(p)K(p)] δx, (9)

where K(p) = [K1(p) K2(p) ] is the gain scheduled controller.
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5.3 Tracking control design

This controller would result only to a desired transient of all local models by plac-

ing the poles of all the local systems within a specified area. However since our

aim is good tracking for the missile we should include to the design specifica-

tion except peak overshoot and settling time, zero steady-state error. This can be

achieved with an integral term in the forward path.

The new augmented model would contain for this system one more state vari-

able to account for this integral term. This new state variable is defined as:

xi =

∫ t

t0

edt =

∫ t

t0

(y − r) dt (10)

Therefore,

ẋi = [yd − r] (11)

The state space now is described by:





ẋ
−
ẋi



 =

[

A(p) 0
−C 0

] [

x
xi

]

+

[

B
0

]

ζ +

[

0

I

]

r (12)

The compensated system therefore becomes:





ẋ
−
ẋi



 =

[

A(p)− BK(p) −BKi

−C 0

]





x
−
xi





+





0

−
I



 r (13)

The characteristic polynomial of the compensated system is then equated with

the desired polynomial at each step to adapt the controller gains.

The compensated system is of one order higher than the nominal one. This

is because of the integral term, added for tracking purposes. The third pole has

to be placed however in such location that the third order compensated system to

behave similar to a second order. This add an extra requirement to the selection

of gains for pole placement.
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5.4 Stability and performance design

A suitable pole placement for this closed-loop system (9) will guarantee stability

and performance accordingly. A polytopic approach is chosen here to capture the

system nonlinearities. The polytope has to be sufficiently fine and representative

of the closed-loop system on the full flight envelope. However, the convex hull on

the full range of flight envelope give only very limited insight of the nonlinearities

involved and a family of convex hull representative of the system on the flight

envelope is preferred.

Hence, a controller is computed such that a Lyapunov function on each convex

polytope of the closed-loop system can be found. This process can lead to some

conservative results but there is guarantee of performance criteria introduced in

Section 4 on each of these polytopes. In this work, the LMIs involved have been

solved with the LMI Toolbox, Gahinet et al [?] for Matlab. The process is still

difficult since there is no easy way to estimate the refinement needed to meet

the requirements and the feasibility of the LMIs. Consequently, using genetic

algrithms, the flight envelope is split as many times as necessary to obtain feasi-

bility of the LMIs on each of sub-domain [?]. This approach leads to a discrete

family of controllers each of them valids in its direct neighbourhood i.e. its cor-

responding convex polytope. The family of polytopes, noted P has to cover the

whole flight envelope, F ,

⋃

(i,j,k)∈N l×Nm×Nn

P (i, j, k) = P ⊂ F , (14)

where (l, m, n) is the total number of controllers on each dimension. From the

design results a family of controllers given by,

K = {K(i, j, k)| ∀(i, j, k) ∈ Nl ×Nm ×Nn K(i, j, k) valid on polytope P (i, j, k)}.(15)

So far, the performance has been guaranteed only on each individual convex

polytope. To extend this result to the whole flight envelope further constraints on

the design have been imposed. The linear interpolation of the gains of successive

controllers has been considered in the following. Each controller K(i0, j0, k0) has

to satisfy the LMIs at p(i0, j0, k0), as in Section 4, and in its direct neighbour-

hood in a common domain with other neighbouring controllers. In this work the

direct neighbour of K(i0, j0, k0) considered is as far as the p(i, j, k) ∀(i, j, k) ∈
{i0 − 1, i0 + 1} × {j0 − 1, j0 + 1} × {k0 − 1, k0 + 1}. Finally, any linear combi-

nation of these controllers in a direct neighbourhood satisfies the LMIs and hence
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the performance. Figure 4 is an attempt to visualise such polytopes for low di-

mensions.

On each polytope a Lyapunov function is found satisfying the LMIs and gives

a linear controller. Thus, the linear interpolation between these controllers car-

ries over the performance properties of the closed-loop system to the whole flight

envelope.

�
�
�
�

����
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����

��
��
��
��

P

p(i; j + 1)

p(i; j)

p(i� 1; j)
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h
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n
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Figure 4: A simple case of polytope P for a plant of dimension one and a param-

eter p of dimension two.

Next it is now proved, using resuls of Section 4, that this last approach guaran-

tees the performance on whole flight envelope. Let assume the controllerK(i0, j0, k0),
which is referred in the following of this section by a subscript 0. The common

Lyapunov matrices X0 and Y0 in Equation (8) lead to K0 valid on P0. And accord-

ing to the discussion before, for instance, K0 is valid up to point pi0−1,j0−1,k0−1

(noted p−3) of sub-polytope P−3, in consequence the following holds,

λX0 + µA0X0 + µTX0A
T
0 + µB0Y0 + µTY T

0 BT
0 < 0

λX0 + µA−3X0 + µTX0A
T
0 + µB−3Y0 + µTY T

0 BT
−3 < 0, (16)

where to simplify λi,j is noted λ, µi,j and µj,i are noted by µ and µT respectively.

In a similar way, controller K(i0 − 1, j0 − 1, k0 − 1) is valid at p−3 and p0. The

combination of these results shows that the linear interpolated controller between

these points still satisfies the LMIs (8), hence the performance criteria.

Figure 5 shows the controller gains on the whole range of Mach number and

incidence angle for zero roll angle. There are 9×18 = 162 controllers in order for

the system to satisfy the performance criteria. The time responses for the linear

interpolated controller is shown on Figure ?? for latax demand, 100 m/s2 at Mach

2.15. As expected, the velocity satisfies the performance requirements of settling

time and damping.
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Figure 5: The gain scheduling controller gains for the flight envelope at 0◦ roll

angle.

6 Fuzzy Inference System

A Takagi-Sugeno (T-S) fuzzy controller [11] is used to determine the control gains

required for any given Mach and incidence angle in order to generate a system

with a given performance characteristic. The system has two inputs, Mach and

incidence, and generates three outputs which are the three control gains required

for the PI controller.

The Takagi-Sugeno (T-S) fuzzy controller is composed of r rules that can be

represented as:

Plant rule i: If ei is Mj and ei is Ik
Then δKni

= Kni
,

i = l, 2, . . . r, and n = 1, . . . 3,

Where Mj and Ik are individual membership functions of the two inputs and Kni

is the required set of gains for the rule.

The T-S fuzzy model infers the gains Kni
(t) as the output of the fuzzy model,

given all the rules, as follows, where νi is the total degree of membership for rule

i.

Kni
=

∑r

i=1 νi[δKni
]

∑r

i=1 νi
(17)

7 Multiobjective Evolutionary Algorithm

7.1 Introduction

Evolutionary Algorithms are optimisation procedures which operate over a num-

ber of cycles (generations) and are designed to mimic the natural selection process

through evolution and survival of the fittest [6]. A population of M independent
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individuals is maintained by the algorithm, each individual representing a poten-

tial solution to the problem. Each individual has one chromosome. This is the

genetic description of the solution and may be broken into n sections called genes.

Each gene represents a single parameter in the problem, therefore a problem that

has eight unknowns for example, would require a chromosome with eight genes

to describe it.

The three simple operations found in nature, natural selection, mating and

mutation are used to generate new chromosomes and therefore new potential so-

lutions. In this paper, an evolutionary strategy was used where new chromosomes

were generated by a combination of mating (otherwise known as crossover) and

applying Gaussian noise to each gene in each chromosome, with a standard devi-

ation that evolved along with each gene. Each chromosome is evaluated at every

generation using an objective function that is able to distinguish good solutions

from bad ones and to score their performance. With each new generation, some

of the old individuals die to make room for the new, improved offspring. Despite

being very simple to code, requiring no directional or derivative information from

the objective function and being capable of handling large numbers of parameters

simultaneously, evolutionary algorithms can achieve excellent results.

7.2 Algorithm structure

The evolutionary strategy begins by generating an initial population of 50 chro-

mosomes at random with the standard deviations of the mutations all set initially

as one eighth of the total range of each gene. The initial population is evalu-

ated and objective values generated (see section 7.3) and then sorted (section7.4).

Crossover and mutation are then applied to the chromosomes to generate another

50 chromosomes. These new chromosomes are then evaluated and the best 50

from all 100 chromosomes are chosen for the next generation. The process is

repeated for 100 generations.

The crossover operation takes each chromosome in turn (chromosome a), and

for each chooses a second chromosome at random (with replacement) to cross

with (chromosome b). A new chromosome (c) is generated 70% of the time using

(18), and for the remaining 30% of the time, a copy of chromosome a is made. In

(18), ak, bk & ck are gene k of chromosomes a, b & c and Uk is a uniform random

number in the range [0,1] chosen anew for each gene and each chromosome a.

ck = ak + (bk − ak)(1.5U − 0.25) (18)

The evolutionary strategy updates the standard deviation of the mutation and
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the value of each gene for every gene in each new chromosome, using (19). In

(19), σ′
k(x) is the standard deviation of gene k of chromosome x, ω′

k(x) is the

value of gene k of chromosome x, N(0, 1) is a random number with zero mean and

unity variance Gaussian distribution and is chosen once per chromosome, Nk(0, 1)
is a random number with zero mean and unity variance Gaussian distribution and

is chosen afresh for every gene, and n is the number of genes in each chromosome.

σ′
k(x) = σk(x) exp(τ0N(0, 1) + τ1Nk(0, 1))

ω′
k(x) = ωk(x) + σ′

k(x)Nk(0, 1)

τ0 =
1

√

2
√
n

τ1 =
1√
2n

(19)

7.3 Chromosome structure and objectives

7.3.1 Chromosome

The chromosome structure needs to represent both the membership functions for

the two inputs, and the output values for every possible rule. Three, four and five

membership functions have been used for each of the two inputs. The member

functions are triangular and overlapping to always give a unity sum as shown in

figure 6

For the two inputs, the input ranges are e0 = 0.6 to em = 6 for the Mach

number, and e0 = 0◦ to em = 30◦ for the incidence. For example, for four

member functions on an input, three genes are required to describe the relative

positions of the peaks of the member functions as shown in figure 6. This process

gives a total of 4 genes to represent the membership functions for three member

functions per input, 6 genes for four member functions per input, and 8 for five

member functions. Each of the genes must lie in the range (0,1].

With n member functions per input, there will be n2 possible rules. The output

value for each the rules is simply a triplet of constants, one for each of the three

outputs. Therefore with say four input member functions on each input, there are

16 possible rules, at 16 possible combinations of Mach and incidence. At each

Mach–incidencecombination, the three control gains are calculated by evaluating

a local model of the system. The gains calculated by the local model are then as-

sociated with the corresponding rule and used to create the fuzzy control surface.
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a∆ b∆ c∆

µ=1

e maxe = 0

Figure 6: Membership function structure
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7.3.2 Objectives

The performance is tested by generating the step response of the system for 100

uniformly spaced points in the Mach / incidence domain (10 per input). The rise

time and settling time of the system are recorded at each point. Two objectives

are then generated that summarise the performance of each chromosome.

The first objective is taken as the difference between the slowest and fastest

rise times of the 100 trials for each chromosome. The second objective is the

difference between the slowest and fastest settling times.

7.4 Non-dominated Ranking

With multiple objectives, a Pareto-optimal set of results [6] may be formed where

no single solution is better than any other in all objectives. These solutions are said

to be non-dominated as no solution can be chosen in preference to the others based

on the all objectives alone. There exists a single Pareto-optimal set of solutions

to the problem. At any intermediate stage of optimisation, a set of non-dominated

results will have been identified. This set may or may not be the Pareto optimal

set.

A non-dominated ranking method [6] is used in the evolutionary algorithm to

generate and maintain a non-dominated set of results. Conventional evolutionary

algorithms often use a ranking method where the calculated objective values are

sorted and assigned a rank that is dependent only upon their position in the list,

rather than their objective value. The ranking operation helps to prevent premature

convergence of the evolutionary algorithm.

The non-dominated ranking system operates by first identifying the non-dominated

solutions in the population and assigning them a rank of one. A dummy value (1

in this implementation) is assigned to these solutions and a sharing process is ap-

plied. With the sharing, the dummy values of the individuals’ are reduced if they

have near neighbours (in the objective space). The sharing process ensures that

a spread of solutions is obtained across the non-dominated front. The minimum

value assigned to the level-one solutions is identified and then reduced slightly

(by 1%) and used as a dummy value for the next level of processing. The level-

one individuals are removed from the population and the identification–sharing

process repeated on the remaining set, using the reduced dummy value for the

sharing operation. The ranking process is continued until all of the individuals

have been accounted for. The resulting objectives are intended to be used with a

maximisation strategy and have been adjusted to allow both of the objectives to be
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minimised.

8 Experimental Results

Figure 7 shows a set of typical non-dominated surfaces after 100 generations for

each of the membership function configurations. Both of the objectives cannot be

minimised simultaneously, so the Pareto front forms curves. All of the solutions

on the non-dominated front are valid solutions to the problem and it is down to

the system designer to choose a single solution for use in the control system.
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Figure 7: Pareto set for 5 Membership Functions (MF) each, 4 MF each and 3 MF

each

Figures 8 and 9 show the locations of the membership functions for the 3

membership function system (MF 1 and 3 are at zero and 1 respectively). The
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positions are sorted to correspond to the order of the points on the Pareto set, with

point 1 corresponding to the solution in the top left hand corner of the Pareto set.

Figures 10, 11, 13 & 8 show the corresponding plots for the trials with 4 and 5

membership functions per input.
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Figure 8: Membership function locations for Mach and 3 member functions

It is clear from figures 8, 10 & 12 that the Mach input is dominant when

shaping the control surfaces. The lines on the plots progress smoothly with respect

to the objective surface, whereas figures 9, 11 & 13 have little correlation with

the progression of the objectives. This effect suggests that fewer membership

functions are required for the incidence input.

Figures 14, 15 & 16 show the surfaces generated by the fuzzy inference sys-

tems for the three control gains for the solution with 5 membership functions in

both inputs that minimises the error in the spread of rise times.
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Figure 9: Membership function locations for Incidence and 3 member functions
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Figure 10: Membership function locations for Mach and 4 member functions
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Figure 11: Membership function locations for Incidence and 4 member functions
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Figure 12: Membership function locations for Mach and 5 member functions
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Figure 13: Membership function locations for Incidence and 5 member functions
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Figure 14: Example gain surface for K1 and 5 MF per input
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Figure 15: Example gain surface for K2 and 5 MF per input
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Figure 16: Example gain surface for K3 and 5 MF per input
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9 Conclusions

This paper has shown that a fuzzy pole-placement controller can be designed for

complex non-linear systems to produce given performance over a range of plant

conditions. The use of evolutionary algorithms to optimise the fuzzy inference

system removes the requirement of expert knowledge to design the fuzzy land-

scape as the multiobjective algorithm is capable of discovering a range of solu-

tions with little designer intervention.

The multiobjective formulation allows many potential solutions to be gener-

ated simultaneously. The designer can then choose a candidate solution whilst

being informed of what other solutions to the problem may exist.
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