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A methodology is described to assess the detectability of

targets by an airborne fire control radar (FCR) operating in a

medium pulse-repetition frequency (PRF) mode in the presence

of strong ground clutter as a function of the transmitting and

receiving antenna array weighting functions and proportion

of failed array elements. It describes the radar, antenna, and

clutter modelling processes and the method by which target

detectability is quantified. The detectability of targets in clutter is

described using a detectability map, which provides a useful means

of comparing target detectability as clutter conditions change.

It concludes that the best target detectability is to be achieved

using those weighting functions on transmit and receive which

result in the lowest average sidelobe levels but that the margins

between the more highly tapered weighting functions were small.

Furthermore, it concludes that target detectability degrades as

the proportion of failed elements increases. A failure of 5% of the

elements gave modest, though meaningful, degradations in target

detectability and would therefore form a suitable upper limit.
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I. INTRODUCTION

This paper describes simulation work to assess
the detectability of targets by an airborne fire control
radar (FCR) operating in a medium pulse repetition
frequency (PRF) mode in the presence of strong
ground clutter as a function of transmitting and
receiving array weighting functions. This paper also
models the compromise in target detectability through
the graceful degradation of up to 5% of failed array
elements. It describes the radar, antenna, and clutter
modelling for a system operating a three of eight
medium PRF schedule waveform. Medium PRF
waveforms and the selection of PRFs are described
in the authors’ previous papers [1—5].
Target detectability depends on the number

of PRFs in which any target is visible and on
the probability of detection (Pd) in each PRF
[6]. The Pd in each PRF is determined by the
signal-to-noise-plus-clutter ratio (SNCR), amongst
other factors, and varies across the range and velocity
(Doppler) detection space of the radar due to the
ambiguous repetition of clutter across this detection
space. Minimizing sidelobe clutter (SLC) through the
minimization of antenna sidelobe level is a design
priority for such systems. This may be achieved by
applying a tapered illumination function across the
antenna aperture and can be implemented readily by
appropriate amplitude and phase weightings of the
elements of an active electronically scanned array
(AESA) antenna. However, tapered illumination
functions result in a reduction in main beam boresight
gain together with a broadening of the main beam,
both of which are further degraded when the
beam is phase steered away from its mechanical
boresight. Furthermore, phase steering tends to
generate increased sidelobes. Thus there appears
to be a conflict of interests in applying tapered
illumination across an array antenna as far as target
detection is concerned; on the one hand the tapered
illumination reduces the sidelobe level, but on the
other it leads to a loss of main beam gain. Thus
both clutter and target signal strengths are reduced
through the use of a tapered antenna illumination,
or conversely, both are maximized for a uniformly
illuminated antenna. The question arises as to whether
tapered illumination actually leads to increased target
detectability or not in scenarios in which target
detection is likely to be clutter limited (i.e., low flying,
look-down).
This question has been addressed by modelling

the clutter scene in an airborne FCR for various
combinations of transmitting and receiving array
weighting functions, azimuth and elevation steering
angles, platform altitudes, and probabilities of
failed array elements. For each combination of
conditions, target detectability is derived over the
full range/velocity detection space of the radar.
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TABLE I
Radar Model Parameters

Parameter Value

Frequency 10 GHz (fixed)
PRI (=1/PRF) 35.5, 38.5, 44.5, 49.5, 56.0,

64.5, 69.0 and 94.0 ¹s
Space charging time 1.7 ms

Target illumination time 42.5 ms
Duty ratio 10% (fixed)

(Transmitted pulse width 10% of PRI)
Peak transmitted power 10 kW
Pulse compression Yes (variable with PRF)
Range resolution 75 m (0.5 ¹s in time) (fixed)
Doppler processing 64 point FFT
Eclipsing blindness transmitted pulse width+0:5 ¹s
Maximum range 185 km (100 nmi)
Maximum velocity 1500 ms¡1 (Doppler = 100 kHz)

System noise figure, F 5 dB

Comparisons between the target detectability of
the various conditions are evaluated in order to
determine the optimum transmitting and receiving
array weighting functions. As a secondary aim,
the degradations resulting from a loss of up to
5% of the array elements were also modelled and
quantified.
Section II of this paper describes the radar, antenna

and clutter modelling processes and the method by
which target detectability is derived and compared. In
Section III, the results are presented and discussed.
Finally, Section IV draws conclusions.

II. MODELLING PROCESSES

A. RADAR MODEL

The radar model is intended to be representative
of a modern FCR. It has been assumed that the
radar operates on a medium PRF schedule of eight
PRFs and requires target data in a minimum of three
PRFs for ambiguity resolution. It is further assumed
that range and Doppler ambiguities are resolved
using the coincidence algorithm. The selection of
the eight pulse-repetition intervals (PRI = 1=PRF)
was made in a separate exercise as described in
[1—5]. It is commonplace to use a filter to reject main
beam clutter (MBC) over a narrow bandwidth in the
Doppler domain prior to fast Fourier transform (FFT)
processing. It is also commonplace to apply platform
motion compensation (PMC) such that the velocity of
mainbeam boresight detections are ground referenced.
In this way, MBC is centred at zero Doppler and at
multiples of the PRF. PMC is assumed in this study;
however, no MBC filtering is assumed. This ensures
that target detectability may be evaluated even in
regions of strong MBC. The radar platform altitudes
considered were 1000 m and 5000 m and the platform
velocity was taken as 300 ms¡1. Other parameters of
the radar model are summarised in Table I.

TABLE II
Combinations of Array Weighting Functions

Transmit Weighting Receive Weighting
patterns Function Function

1 Uniform Uniform
2 Uniform Taylor 35 dB
3 Uniform Taylor 45 dB
4 RTT Taylor 35 dB
5 RTT Taylor 45 dB
6 SPTN Taylor 35 dB
7 SPTN Taylor 45 dB

B. Antenna Model

A planar AESA antenna comprised of 1041
elements distributed in a diamond lattice over
a circular area of nominal diameter 56 cm was
modelled. The element spacings were nominally a
half wavelength. Three possible transmitting array
weighting functions were considered: uniform, radial
transmit taper (RTT) [7, 8], and successive projection
transmit nulling (SPTN) [8, 9]; and two possible
receiving array weighting functions were considered:
Taylor 35 dB and Taylor 45 dB (n̄= 2). In addition
to these six combinations of weighting functions, a
seventh, that of uniform on transmit and uniform on
receive, was also considered for comparative purposes.
The seven combinations of the transmitting and
receiving array weighting functions (named patterns)
are defined in Table II.
The weighting function data defined the magnitude

and phase of the current exciting each element.
Furthermore, each element of the array was defined as
having a power gain pattern which varies as the cosine
of the angle off the mechanical boresight. The phase
of each element was under the control of a six bit
phase shifter. The magnitude (power) of each element
was subject to a tolerance of 0.3 dB (Gaussian of
zero-mean and ¾ = 0:3 dB) and a phase tolerance of
2± (Gaussian of zero-mean and ¾ = 2±). It was also
necessary to account for the random failure of 0%,
2%, and 5% of the elements. This was modelled by
including a function which set the probability of each
element having zero amplitude to 0.00, 0.02, and 0.05,
respectively. This ensured that the selection of failed
elements was randomized but that each element was
equally likely to fail. The complete loss of elements,
i.e., zero transmitted and received power, was the
only failure mode considered in this study since it
is the most damaging to the array radiation pattern.
The authors acknowledge the possibility of a host of
other possible failures (e.g., partial loss of powers,
loss in either transmit or receive modes, and increased
receiver noise figure), but these were considered
outside the scope of this study. Notwithstanding
this, it would be easy to accommodate such failure
modes within the model. The simulation has been
conducted in MATLAB; it loads in element amplitude
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TABLE III
Summary of Array Radiation Patterns

Weighting Function Peak Gain (dBi) Gain Loss wrt Uniform (dB) 3 dB Beamwidth (deg) Peak SLL (dB) rms SSL (dB)

Uniform 33.53 0 3.08 ¡17:50 ¡32:12
Taylor 35 dB 32.41 1.111 3.74 ¡34:82 ¡47:20
Taylor 45 dB 31.70 1.822 4.04 ¡43:63 ¡54:82

RTT 32.99 0.538 3.46 ¡20:63 ¡35:13
SPTN 33.30 0.228 3.33 ¡16:68 ¡32:73

(lower hemisphere) (¡18:86) (¡35:90)

and phase data from a large data file matrix and
results in the antenna gain being expressed as a
large two-dimensional array. It would be possible to
overwrite specific elements of the array (i.e., specific
elements of the array data matrix) to adjust their
amplitude and/or phase responses as required. The
organisation of such matrices also enables whole
rows, columns, or subarrays to be readily adjusted as
required. Simple phase gradients were derived which
provided the necessary steering in both azimuth and
elevation. Simulations were run for azimuth steering
angles of 0± (dead ahead), 30±, and 56± and for
elevation angles of 0± (towards horizon, both platform
altitudes) and 5:5± down (5000 m altitude only).
Therefore, there were a total of nine combinations
of altitude, azimuth, and elevation steering angles
together with three probabilities of failed elements
giving rise to 27 differing conditions for each of the
seven patterns, i.e., 189 total simulations.
The far-field radiation pattern was derived by

computing the two-dimensional Fourier transform
over the array surface. Only the lower hemisphere
need be derived since only this portion illuminates
the ground. Furthermore, only the forward-looking
half-hemisphere was considered since the rearward
looking pattern is likely to be dominated by the
interaction with the radome which was outside the
scope of this study. The rearward pattern results in
negligibly low levels of clutter in the negative Doppler
domain. Later analysis (Section IIE) supports this
assumption; results are dominated by the far higher
antenna gains in the forward half-hemisphere.
Each element produces 10 W of RF power, giving

rise to approximately 10 kW of total power. The peak
main beam boresight gain for the uniform weighting
function (assuming no magnitude and phase errors
and zero failed elements) was normalised to 33.5 dBi
by an appropriate scaling factor. All other radiation
diagrams were scaled by the same factor to ensure
that the computed radiation diagrams represented
the true effective radiated power (ERP). Example
radiation diagrams are reproduced in Figs. 1 and 2.
Fig. 1 illustrates the best case radiation diagram of the
uniform weighting function having zero phase steering
angles, no magnitude or phase errors, and zero failed
elements, whereas Fig. 2 illustrates the worst case
radiation diagram of the uniform weighting function

having phase steering angles of ¡5:5± in elevation and
56± in azimuth, 0.3 dB magnitude and 2± phase errors,
and 5% failed elements.
The radiation pattern of the ideal antenna

uniformly weighted illustrated in Fig. 1 indicates
a main beam boresight gain of 33.53 dB, a 3 dB
beamwidth of 3:08±, and a peak sidelobe level (SLL)
of 17.50 dB below the main beam. When elemental
magnitude and phase tolerances of 0.3 dB and 2±,
respectively, and a proportion of failed elements of
5% are all applied, the changes in these parameters
are barely noticeable. However, when the beam is
steered well away from its mechanical boresight,
as in Fig. 2, the antenna parameters degrade to the
following: main beam boresight gain = 30:21 dB, peak
SLL =¡16:86 dB, and azimuth 3 dB beamwidth =
5:71±. Similar plots affirm the peak SLL of ¡35 dB
for the Taylor 35 dB function. However, the Taylor
45 dB function results in a peak SLL of around
¡43 dB, which is slightly above the expected level
of ¡45 dB. This discrepancy is due to the magnitude
and phase tolerances of each element, since when
these were set to zero, a peak SLL of ¡44 dB was
obtained. The radiation patterns for the RTT and
SPTN functions indicate that the RTT has a maximum
SLL of around ¡20:6 dB, whereas the SPTN has
a maximum SLL of around ¡16:7 dB, although its
sidelobes at large angular offsets from the mainbeam
boresight decay away more quickly than for the RTT.
The SPTN function also gives rise to unusually large
sidelobes some 11:5± below the mainbeam boresight;
these are at a level of ¡23:0 dB. A summary of the
radiation patterns for each array weighting function
is given at Table III under the ideal cases of zero
magnitude/phase errors, zero failed elements, and zero
steering angles. Note that the SPTN pattern has been
optimised to reduce lower hemisphere sidelobes at the
expense of larger sidelobes in the upper hemisphere.
The authors acknowledge that subarray processing
and radome effects may limit the integrity to which
these idealised patterns may be reproduced, however,
the use of idealised radiation patterns in this work is
sufficient to demonstrate the principle.

C. Clutter Model

In modelling the clutter and noise, all statistical
variation has been eliminated in order to permit
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Fig. 1. Ideal array for uniform weighting function. No steering angle, zero magnitude and phase errors, zero failed elements.

Fig. 2. Worst case array for uniform weighting function. 56± azimuth and ¡5:5± elevation steering angles, 0.3 dB magnitude and 2±
phase errors, 5% failed elements.

small changes in target detectability to be resolved.
Clutter modelling in the forward hemisphere only
is required. The method previously described in
[1] is used. Clutter is mapped by considering the
surface under the radar to be marked out by a grid
along orthogonal x and y coordinates centred at 0,0
directly under the radar. The model steps through
increments in the x and y coordinates in the forward
half space (i.e., positive y) out to the maximum range
of interest. At each location the model computes the
slant and ground ranges and the resolved Doppler
shift along the line of sight to the radar together with
the grazing angle, clutter backscatter coefficient,
and clutter radar cross section (RCS). An important
aspect of the clutter mapping process is the resolution
of the increments along the x=y coordinate system.

At each location the clutter RCS is computed on
the basis of a clutter area equal to the square of the
x=y resolution. Ideally, the x=y resolution should be
finer than the radar range resolution since otherwise
there will be large clutter patches appearing in some
resolution cells and nothing in neighbouring cells.
However, very fine x=y resolution is unnecessary
and increases the computational time. Since the radar
range resolution is 75 m, an x=y resolution of 50 m
has been used.
The clutter backscatter coefficient (BSC) is a

function of the grazing angle μg which is computed
for each point in the clutter modelling process. The
BSC was defined as

BSC= ¾0 sin(μg) +¾0V exp
μ¡(90¡ μg)

μ

¶
(1)
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Fig. 3. Surface clutter BSC versus grazing angle.

where ¾0 =¡15 dBm2 and ¾0V =¡5 dBm2 (in linear
units), and μ =¡20= loge(sin70±=A) and A= ¾0V=¾0.
¾0V defines the BSC at normal incidence, and

¾0 defines the BSC at a mid-grazing angle. The
dependence of BSC on grazing angle is depicted
in Fig. 3. The power of the clutter returns was
calculated using the following form of the radar range
equation in which the clutter RCS is cascaded with the
transmitting and receiving antenna gains along the line
of sight to the radar by reference to the appropriate
antenna radiation pattern data.

clutter power =
PT:GT:GR:¸

2:RCSC
64:¼3:R4S

(2)

where PT = peak transmitted power (= 10 kW),
GT = transmitting antenna gain,
GR = receiving antenna gain,
RS = slant range,
¸=wavelength = 0:03 m,
RCSC = clutter radar cross section = BSC£

(x=y resolution)2.
The clutter power calculated from (2) was

then range and Doppler gated and added into the
appropriate range/Doppler cell on top of the noise
power and any previously calculated clutter signals.
PMC is applied by precalculating the Doppler gate of
the centre of the main beam and applying this as an
offset to the Doppler gated clutter. The total clutter
and noise power is then stored in a two-dimensional
matrix (range cell versus Doppler cell) and displayed
on a folded clutter map. Folded clutter maps in each
PRF are derived which are subsequently required to
produce the maps of target detectability. A folded
clutter map is one in which the clutter amplitude from
the full detection space of the radar is folded into
one ambiguous range and Doppler interval. Thus, a
clutter map always has 64 equal intervals in Doppler,
since this is the FFT size, but a variable number of
range cells, which is equal to the number of range
cells in one PRI. A constant fixed noise power level

Fig. 4. Folded clutter map. PRI = 56 ¹s.

of k:T0:Bn:F is included in every cell of the map in
which k is Boltzmann’s constant = 1:38£ 10¡23 J/K;
T0 is a standard temperature of 290K, Bn is the noise
bandwidth = (transmitted pulse width)¡1; and F is the
noise figure = 3:16 (5 dB). An example of a folded
clutter map is given in Fig. 4. The clutter map may
be unfolded to cover the complete range/velocity
detection space specified by the radar model by tiling
the folded clutter map as many times as necessary.

D. Target Detectability

Target detectability over the full range/Doppler
detection space of interest is conveniently represented
by a detectability map [1]. The folded clutter map
of Fig. 4 is replicated in range and Doppler over
the full detection space of interest (i.e., 185 km in
range by 1500 m/s in velocity) due to the repetition
of data in the time and frequency domains. This
results in an unfolded clutter map. Each PRF in the
schedule has a similar, though different, unfolded
clutter map. The probability of detection of a discrete
target at any range/Doppler cell of interest depends
on the number of PRFs in which the range/Doppler
cell is not eclipsed and the probability of detection
in each PRF, as determined by the SNCR of the
cell. Blindness results from eclipsing, with no MBC
blanking being assumed. A detectability map can
therefore be derived over the full range and Doppler
detection space of the radar and denotes the minimum
target RCS required for detection at each range and
Doppler cell in an appropriate number of PRFs. The
detectability map may be thresholded at a given fixed
RCS to indicate regions where a target of the given
RCS would be visible/not visible. This thresholding
forms the classic blind zone map for a medium PRF
schedule. An example detectability map is given in
Fig. 5 based on a required SNCR= 0 dB in at least
three PRFs from the total of eight. Similar criteria
have been used in the generation of all detectability
maps used in this study. Should a more realistic
SNCR of, for example, +13 dB be required, one need
only apply a 13 dB offset to the detectability map
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Fig. 5. Detectability map.

data. Therefore a target with RCS of 13 dB greater
than the level read from the detectability map would
be detected with a Pd commensurate with the SNCR
of 13 dB. Whilst every effort has been maintained to
ensure that the minimum target RCS requirement of
the detectability maps is properly calibrated, there are
inevitable sources of error. The radar range equation
of (2) omits the integration gain and filter shape
losses associated with the FFT process and also the
atmospheric and system losses. Both static clutter and
discrete targets would be subject to similar processing
gains; subtle differences would arise depending on
the temporal statistics of each, whereas losses affect
both equally. For identical processing gains (clutter
and discrete targets) the SCR would be independent
of the processing gain. Integration gain has therefore
been omitted from equation (2). As far as noise is
concerned, the appropriate integration gain is applied
in the generation of the detectability map. However,
detection is generally clutter limited rather than
noise limited. There is no distinction between clutter
and discrete targets. There are no discrete targets
within the (simulated) scene, just surface clutter. A
detectability map simply plots the RCS that a target
would have to possess if it were to be detected in
the requisite number of PRFs (three from eight in
this case) with a sufficient SCR (0 dB in this case).
This is the threshold value of RCS that triggers the
transition from blindness to visibility in a classical
blind zone map. The threshold RCS varies for each
range/velocity cell within the detection space of
the radar [1]. Without intimate knowledge of every
aspect of the system design, it would be impossible
to calibrate the detectability maps. However, each
detectability map is valid given the assumptions made
in the radar, antenna, and clutter models, and therefore
comparisons between detectability maps are also valid.
Furthermore, comparisons remain valid irrespective of
any offsets which may be applied to the detectability
maps (such as may be required to depict a detection
criterion of SNCR¸+13 dB) so long as a constant

offset is applied to all detectability maps. In this work
the benefits of different array weighting functions
were derived through direct comparisons between
detectability maps. Detectability maps are a useful
means of characterizing relative performances in
clutter.

E. Evaluating Target Detectability

Each of the 189 simulations results in eight
folded clutter maps, one for each PRF. However, the
resolution differs in each of the eight. A folded clutter
map always has a fixed number of Doppler cells each
of width = PRF=FFT size, thereby fixing the number
of Doppler cells to the FFT size (= 64, in this case)
but yielding a Doppler resolution which varies with
PRF. The range cell width, however, is fixed by the
compressed pulse width (= 0:5 ¹s or 75 m, in this
case), and so the number of range cells in the folded
clutter map = PRI=0:5 ¹s and is therefore a function
of the PRF. For an example PRF of 10 kHz, one
obtains a folded clutter map of 64£ 200 = 12800
range/Doppler cells; each cell forming a pixel of
the clutter map. For the case of a 10 kHz PRF, the
transmitted pulse width is 10 ¹s and so the number
of blind (eclipsed) range cells = 21. Thus the total
number of blind range/Doppler cells is 21£ 64 = 1344
or 10.5% of the clutter map.
In constructing the detectability map, the eight

folded clutter maps corresponding to the eight PRFs
in the schedule are unfolded to occupy the whole
range and Doppler detection space of the radar. This
requires that they be read at a common resolution
which can be no finer than that of the coarsest map.
Hence the resolution of the detectability map is
marginally coarser than the original clutter maps.
The eight maps are then overlaid, and the RCS
level which toggles blindness is established. Since
all detectability maps are plotted with a common
resolution, it is a simple exercise to compare two
maps pixel by pixel since each pixel relates to a
consistent range/Doppler cell. Due to the unfolding
process, each detectability map is comprised of some
560000 pixels (range/Doppler cells).
In order to assess the dependence of target

detectability on array weighting functions, a test
strategy was developed in which the 27 detectability
maps of one set of transmitting and receiving array
weighting function conditions (corresponding to
the 27 combinations of azimuth/elevation steering
angles, proportion of failed elements, and platform
altitude) were compared with the corresponding
27 detectability maps for each of the other six
sets of transmitting and receiving array weighting
functions. This progressed until all sets of transmitting
and receiving array weighting functions had been
compared with all the other sets. This test strategy
has been found to be necessary due to the complexity
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of the optimization problem posed by this study. As
an optimization problem, this work seeks to optimize
a single objective: the detection performance of the
radar via the selection of an optimal combination
of transmitting and receiving antenna weighting
functions. However, the complexity arises because
target detectability is quantified over several hundreds
of thousands of range/Doppler cells (i.e., it is highly
multi-dimensional) which must be distilled into
simpler metrics. These optimization problems can
typically yield several optimal solutions, collectively
forming a Pareto optimal front [10], otherwise known
as a trade-off surface. Optimal solutions identified
by each set of comparisons may differ in each case
depending on what metric is used to define target
detectability and what baseline standard is adopted
for each comparison. Two metrics (X and Y) have
been derived which compare the data in pairs of
detectability maps, A and B.
Both the X and Y metrics were derived to give

a comparison of the detectability levels between
two detectability maps. Since each detectability map
comprises around 560000 pixels, the comparison
of two maps is not trivial. The X metric gives an
impression of the relative area of the range/Doppler
space for which the detectability of one test is greater
than the detectability of another. The X metric is
related to the median of the differences between
the two detectability maps. However, the X metric
is insufficient on its own to convey the general
superiority of one map over another because it does
not indicate the margin of any such superiority.
Hence the Y metric is also used. The Y metric sums
the differences (cubed) between the magnitudes of
corresponding pixels of two detectability maps. The
Y metric is the third-order moment of the difference
data and is therefore representative of the skew in
the distribution. The two metrics convey different
aspects of the superiority of one map over another.
The derivation of the two metrics is explained in the
paragraphs below.
1. Ratio of Comparisons, X: The algorithm runs

as follows:

1) Exclude all the elements (i.e., range-Doppler
cell) of A and B which are in regions of eclipsed
blindness. This avoids corrupting the statistical
comparisons which follow.
2) Derive a logical comparison matrix for which

A > B, and sum all its elements. (The comparison
matrix consists of elements = 1 or 0 depending on
whether A > B or not. In summing all the elements,
one derives the total number of elements for which
A > B.)
3) Derive a logical comparison matrix for which

B > A and sum all its elements. (The comparison
matrix consists of elements = 1 or 0 depending on
whether B > A or not. In summing all the elements,

one derives the total number of elements for which
B > A.)
4) These two sums do not necessarily sum to the

total number of elements in the detectability map since
the case of A= B has not been computed. A= B in
blind regions, and elsewhere, A= B = noise in regions
of very low clutter.
5) Derive the ratio of the two sums and express it

on a decibel scale, i.e.,

X = 10: log10

μ
§(A > B)
§(B > A)

¶
: (3)

If the detectability levels of A are generally higher
than those of B, then

P
(A > B) is large and

P
(B >

A) is small and their ratio> 1, so X is a (large)
positive quantity. If the reverse is true, then X is
a (large) negative quantity. The X metric gives an
impression of the relative area of the range/Doppler
space for which the detectability of one test is
greater than the detectability of another. The X
metric is related to the median of the differences
between the two detectability maps. The X metric is
a first-order statistic, similar to the mean; however,
unlike the mean, it is less sensitive to highly skewed
distributions. Regions of dominance of one over the
other may be obtained by mapping the comparison
matrices. The X metric gives no information on the
margin by which one is greater than the other.

2. Sum of Difference Comparison, Y: The
algorithm runs as follows:

1) Exclude all the elements of A and B which
are in regions of eclipsed blindness. This avoids
corrupting the statistical comparisons which follow.
2) Derive the matrix for A¡B. This matrix yields

signed difference values.
3) Cube the difference matrix element by element.

This accentuates the differences and preserves their
sign.
4) Sum all the elements of the cubed difference

matrix. This returns the net difference over the whole
range/Doppler detection space.

Y =§(A¡B)3: (4)

The Y metric is the third-order moment of the
difference data and is therefore representative of
the skew of the difference data distribution. If the
detectability levels of A are generally higher than
those of B then the Y metric will be a (large) positive
number, whereas if the reverse is true, the Y metric
will be a (large) negative number. The Y metric gives
an impression of the “aggregate” level by which the
detectability of one test is greater than the detectability
of another. However, one cannot distinguish between
the case where a few elements in one matrix are
significantly higher than those of the other matrix and
the case where most of the elements in one matrix are
marginally higher than those of the other. Thus the Y
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metric indicates the margin of superiority but not its
extent in area.
The combination of the X and Y metrics therefore

indicate both the area extent of superiority of one
detectability map over another and also on the
aggregate margin of this superiority. (Note: in all tests
it was necessary to exclude the first column of the A
and B matrices since these were dominated by MBC
and mask the subtle effects of the sidelobe clutter.
This provides a partial filtering of MBC by excluding
the very central region but retaining the peripheral
data.)
Of secondary interest is the effect of an increasing

number of failed elements in the array. One expects
failed elements to result in increased sidelobes and a
reduction in main beam boresight gain and therefore
a loss of detectability of targets in clutter; however, it
is worth quantifying these changes in order to judge
an acceptable number of failed elements. To evaluate
this, it is necessary to make comparisons between
detectability maps defined by a common patterns but
differing in the proportion of failed elements Pfe. As
before, the detectability maps were compared using
the same X and Y metrics previously described.

III. RESULTS AND DISCUSSION

A. Array Weighting Function

A series of comparisons have been made between
pairs of detectability maps and the X and Y metrics of
each comparison derived. Batches of 27 comparisons
are made for each combination of transmitting and
receiving array weighting functions, and therefore,
the means X̄ and Ȳ over the 27 comparisons have
been derived. A uniformly weighted mean has been
used in this study, however, one might consider
deriving a weighted mean in order to give preferential
treatment of certain conditions e.g., zero steering
angle. Note that the use of the mean of these metrics
is not intended to imply that they have a Gaussian
spread. Each detectability map has dimensions
of 2467£228 = 562476. However, since the first
column of each map (matrix) is excluded from the
analysis, the processed data has dimensions 2467£
227 = 560009. In some cases it is possible to obtainP
(B > A) = 0 and therefore an infinite value of X

results in which case the mean of X would also be
infinite. The maximum finite value of X arises whenP
(A > B) = 560008 and

P
(B > A) = 1 and results in

X = 57:48. This is unlikely to arise since there exists
the possibility that A= B in some elements, however,
some of the results approach to within 0.02 of this
value. It was therefore decided to cap values of X
which would otherwise be infinite to a value of 57.50.
Similarly, values of X which would otherwise be ¡1
are capped at ¡57:50. In this way, the calculation
of the mean is not confounded. The X̄ results are

TABLE IV
X̄ Results

A patterns

B patterns 1 2 3 4 5 6 7

1 0 ¡49:8 ¡51:8 ¡45:9 ¡47:1 ¡40:6 ¡44:0
2 49.8 0 ¡7:2 ¡13:7 ¡15:7 ¡7:7 ¡11:5
3 51.8 7.2 0 ¡5:8 ¡12:5 ¡0:4 ¡6:1
4 45.9 13.7 5.8 0 ¡5:5 5.7 0.4
5 47.1 15.7 12.5 5.5 0 8.8 5.1
6 40.6 7.7 0.4 ¡5:7 ¡8:8 0 ¡6:0
7 44.0 11.5 6.1 ¡0:4 ¡5:1 6.0 0

TABLE V
Ȳ Results

A patterns

B patterns 1 2 3 4 5 6 7

1 0 -3e32 -4e32 -5e32 -5e32 -6e32 -6e32
2 3e32 0 -3e29 -6.e29 -2e30 -3e30 -5e30
3 4e32 3e29 0 -3e27 -2e29 -4e29 -1e30
4 5e32 6e29 3e27 0 -9e28 -3e29 -8e29
5 5e32 2e30 2e29 9e28 0 -2e28 -1e29
6 6e32 3e30 4e29 3e29 2e28 0 -3e28
7 6e32 5e30 1e30 8e29 1e29 3e28 0

given in Table IV and the Ȳ results in Table V.
Tables IV and V offer mean results over a number of
comparisons. The A patterns defines the transmit and
receive weighting function used as a baseline against
which all the other weighting functions are compared,
as defined by the B patterns. Firstly, the A patterns is
set to 1 (i.e., uniform on transmit and receive) and
the B patterns is set to 2, 3, 4, 5, 6, and 7 in turn.
Next the A patterns is set to 2 (uniform on transmit
and Taylor 35 dB on receive) and the B patterns
is set to 1, 3, 4, 5, 6, and 7 in turn. This continues
with A patterns being set to 3, 4, 5, 6, and 7 in their
turn and for each value of A patterns, the B patterns
cycles through all the other values. In this way, each
combination of tranmit and receive weighting function
is compared with all the other ones. (Actually, each is
compared twice, e.g., 1 versus 3 and 3 versus 1, hence
the symmetrical/inverted nature of Tables IV and V.)
This exhaustive method of comparison is necessary
due to the high dimensionality of the test function,
each detectability map being represented by about half
a million pixels.
Both results tables are matrices with a leading

diagonal of zeros and both are symmetrical and
inverted about the leading diagonal. It is worth
recalling that X and Y results which are positive
mean and that the minimum target RCS requirements
defined by the A detectability maps are greater than
those of the B detectability maps. Therefore, positive
X and Y results across the B patterns rows denote the
ability to detect smaller targets using the B patterns
when compared with the respective A patterns. The
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larger the positive results, the greater this margin.
Negative results indicate the opposite.
The rank order of the B patterns from highest

Ȳ (best target detectability) to lowest Ȳ (lowest
target detectability) for all seven sets of results is
consistently 7, 6, 5, 4, 3, 2, 1. The consistency of this
result is believed to be due to the simple arithmetic
expression for Y. The rank order of the B patterns
for the X̄ results is not consistent across all seven sets
of results. However, in all but one set of results, i.e.,
those of A patterns= 1, the highest X̄ (best target
detectability) is obtained for B patterns= 5. When
A patterns= 1, the highest X̄ (best target detectability)
is obtained for B patterns= 3. In all seven sets of
results the lowest X̄ (worst target detectability) is
consistently obtained for B patterns= 1 and it is
obvious that patterns= 1 is far removed from the
optimal solution. The inconsistency in the rank order
of the B patterns for the X̄ results when A patterns=
1 is believed to be due to the fact that the baseline
(A patterns= 1) is very distant from the better
solutions. The small degree of inconsistency in the
rank order of the patterns for the other X̄ results is
believed to be due to the nonarithmetical nature of
the expression for X̄. If one sums the X̄ results over
the seven sets of results (i.e.,

P
X̄) one obtains the

rank order of the patterns from highest (
P
X̄) (best

target detectability) to lowest (
P
X̄) (lowest target

detectability): 5, 4, 7, 3, 6, 2, 1.
The preferred solution depends on the metric

used to quantify target detectability and the baseline
against which comparisons are made. This is a typical
dilemma associated with optimisation problems whose
optimisation goal has high dimensionality, and there is
as yet no known metric which avoids the inconsistent
behaviour observed here. One method to arrive at an
optimum solution based on equal weightings of the X
and Y results may be to award points to each of the
patterns based on the rank order of their seven sets of
X̄ and Ȳ results, i.e., a nonparametric normalization
using rank ordering. The following scoring method is
proposed here: 7 points are awarded for a first place
in the rank order, 6 points for second place, 5 points
for third and so on down to one point for a seventh
place finish. Since also: maximum

P
X̄ points =

maximum
P
Ȳ points = 49, each patterns has an

associated distance from the best possible solution
given by

DISTANCE =r³
49¡

X
X̄ points

´2
+
³
49¡

X
Ȳ points

´2
:

(5)

The points are displayed in Fig. 6 in which “Best”
indicates the maximum utopia solution.
The ascending rank order of DISTANCE

determines the rank order of the solutions defined by

Fig. 6. Points positions of solutions.

patterns. The results of the points scoring are (from
best to worst): 7, 5, 6, 4, 3, 2, and 1.
From Fig. 6 it is evident that patterns= 5 and

7 are almost equal solutions which fall on a Pareto
surface, i.e., no one solution is better on both metrics
simultaneously. However, of the two, patterns=
7 offers the slightly better target detectability.
Furthermore, it is believed that the rank order of
the various results could alter if realistic statistical
fluctuations were admitted in the various modelling
procedures. It may be noted that the better target
detectability is generally obtained for the Taylor
45 dB weighting function to be applied to the
receiving array over the corresponding Taylor 35 dB
function. The worst X and Y results were consistently
obtained for patterns= 1; indeed all solutions which
entail the transmission using the uniform weighting
function (patterns= 1, 2, and 3) exhibit poor target
detectability.

B. Proportion of Failed Elements

A further series of comparisons between
detectability maps has been carried out to compare
the cases of the probability of failed elements,
Pfe = 0:00 versus Pfe = 0:02 and Pfe = 0:00 versus
Pfe = 0:05, for the various combinations of steering
angles, altitude, and transmitting and receiving array
weighting functions. In this case, the A detectability
maps were taken to be those for Pfe = 0:00, whereas
the B detectability maps were those of for which
Pfe = 0:02 and 0.05. Thus there are two comparisons
to be made (Pfe = 0 versus Pfe = 0:02 and Pfe = 0:00
versus Pfe = 0:05) for the nine different combinations
of altitude, azimuth, and elevation steering angles
at each of the seven combinations of transmitting
and receiving array weighting functions (the seven
patterns). The results are given in Table VI, in which
the X and Y results have been averaged (=X̄ and Ȳ,
respectively) over all seven patterns. As before, the
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TABLE VI
X̄ and Ȳ versus Pfe Results

Pfe(A) Pfe(B) Azimuth Steering Angle (deg) Elevation Steering Angle (deg) Altitude (m) X̄ Results Ȳ Results

0.00 0.02 0 0 5000 ¡19:5 -3e21
0.00 0.05 0 0 5000 ¡38:6 -2e22
0.00 0.02 30 0 5000 ¡18:0 1e22
0.00 0.05 30 0 5000 ¡21:9 3e23
0.00 0.02 56 0 5000 ¡14:1 -1e20
0.00 0.05 56 0 5000 ¡19:2 -2e22
0.00 0.02 0 ¡5:5 5000 ¡20:9 3e24
0.00 0.05 0 ¡5:5 5000 ¡32:2 9e25
0.00 0.02 30 ¡5:5 5000 ¡14:2 2e29
0.00 0.05 30 ¡5:5 5000 ¡19:6 2e30
0.00 0.02 56 ¡5:5 5000 ¡12:4 3e29
0.00 0.05 56 ¡5:5 5000 ¡13:9 2e30
0.00 0.02 0 0 1000 ¡17:4 -7e26
0.00 0.05 0 0 1000 ¡33:7 -9e27
0.00 0.02 30 0 1000 ¡13:9 1e29
0.00 0.05 30 0 1000 ¡17:6 3e30
0.00 0.02 56 0 1000 ¡9:4 6e28
0.00 0.05 56 0 1000 ¡14:4 7e30

values of X which would otherwise be infinite have
been capped at 57.50, and the use of the means in
Table VI is not intended to imply that the metrics have
a Gaussian spread.
All the X̄ metric values are negative, indicating

that detectability levels increase (i.e., targets need
to be larger to be detected) for Pfe > 0:00, which
is unsurprising. The larger negative magnitude of
X̄ is consistently obtained for Pfe(B) = 0:05, as
opposed to Pfe(B) = 0:02, which, again, is to be
expected. Comparing the cases of zero element
failures with 2% element failures results in X̄
ranging from ¡20:9 to ¡9:4, mean =¡15:5, which
is comparable to the difference in target detectability
between patterns 2 (uniform on transmit and
Taylor 35 dB on receive) and patterns 5 (RTT on
transmit and Taylor 45 dB on receive), see Table IV.
Comparing the cases of zero element failures to
5% element failures results in X̄ ranging from
¡38:6 to ¡14:4, mean =¡23:5. In this case there
is no near comparison with the margins in target
detectability between the combinations of patterns
from Table IV. Nevertheless, it is clear that the effects
of 2% and 5% element failures is comparable to
some of the more significant differences in target
detectability between some of the best and worst
array weighting functions, as quantified by the
ratio of comparisons metric. The Ȳ metrics vary
between positive and negative values for different
combinations of conditions; there are no consistent
trends, and the Ȳ metric data is rather inconclusive.
However, the magnitudes of Ȳ are typically several
orders of magnitude lower than those of Table V,
Section IIIA, indicating typically smaller margins of
superiority/inferiority in detectability performance.
The changes in target detectability due to 2% and
5% failed elements are, on the whole, less significant

than the effects of array weighting functions.
The combination of the two metrics suggests that
failed elements do result in large regions of the
range/velocity detection space of the radar where
target detectability has degraded. However, over the
whole range/velocity detection space, the aggregate
margin by which target detectability changes is
small and inconsistent. Therefore, the regions of
degraded target detectability exhibit relatively small
margins of degradation. It is also reasonable to
assume that partial failures of elements would result
in smaller regions and margins of degraded target
detectability.

C. Sensitivity of Results to Conditions

The data of Tables IV, V, and VI and the scales of
Fig. 6 are difficult to calibrate. It is difficult to derive
any absolute level of performance, and these tables
and figures only yield comparative performances.
It is in the nature of the problem that the margins
of one scenario over another cannot be reduced to
a single figure; it is not possible to claim that target
detectability in one scenario is x dB better than
another because of the variation across the scene. This
study is based on a sample of typical combinations
of realistic operating conditions which the authors
believe to be representative of most clutter limited
situations, and hence, the conclusions drawn from
these results are valid in this context.
With regard to the sensitivity of the results to the

model parameters, some comments on each of these is
offered below:

Distortion of the beam patterns: It can be seen
that the margins between patterns 5 and 7 is marginal.
Clearly, the difference between these two cases is so
small that it would probably be masked by noise,
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clutter statistical variation, and target fluctuation.
Therefore, it is quite clear that target detectability is
not particularly sensitive to small variations in beam
pattern.
Clutter: All statistical variation in clutter has

been deliberately eliminated as it was feared that such
random variations might mask small changes due to
the array weighting functions. Given the near identical
performances of patterns 5 and 7, this seems to have
been justified since the introduction of clutter statistics
would probably cloud the judgement between similar
beam patterns; it would introduce another unwanted
and unknown factor. Variations in clutter statistics
have been considered in [1].
Failure Probabilities: Three probabilities of

failure have been considered. The results have been
presented and discussed and enable the reader to
make comparisons between these three cases. These
results have also been compared with the differences
due to the use of differing array weighting functions.
In the ensuing discussion it was noted that the X
and Y metrics did not reveal consistent trends but
that in the worst case (i.e., the X metric), the effects
of 2% and 5% element failures are comparable to
some of the more significant differences in target
detectability between some of the best and worst
array weighting functions. However, more typically,
the consequences of up to 5% element failures
on target detectability are relatively small and
inconsistent.
PRFs: Previous work concludes that target

detectability is highly sensitive to the exact choice of
PRF values, number of PRFs used, and criterion for
detection (e.g., three of eight). This is an important
subject area and has been the subject of much of
the authors’ previous work extending over several
years which is reported in [1—5]. The techniques
reported in these works have been used to derive a
near-optimum PRF set for the radar assumed in this
study.
Blindness: The sensitivity of target detectability

to eclipsing blindness has not specifically been
considered in this work; however, the blindness
problem has been considered alongside the authors’
earlier work on the exact choice of PRF values,
number of PRFs used, and criterion for detection (e.g.,
three of eight) in [1—5].
In summary, there is no simple metric to relate the

sensitivity of results to other parameters. These issues
are far from trivial; however, several of these have
been major research topics in their own right and have
been discussed in previous papers.

IV. CONCLUSIONS

Clearly, the differing metrics which one may use
to quantify target detectability result in differing
solutions with very little to choose between them.

However, by combining the means of both the
X and Y metrics in a points scoring system, the
best overall solution was identified as being the
combination of the SPTN function on transmission
and the Taylor 45 dB function on reception. This
was very closely followed by the combination of the
RTT function on transmission and the Taylor 45 dB
function on reception. The overall preference for
the former may well be due to lower rms sidelobe
levels in the lower hemisphere. Nevertheless, it
ought to be stressed that the margins between these
two cases are very small and may very well be
masked by statistical variations in noise, clutter,
and target RCS. It may also be worth noting that
the RTT function results in an effective radiated
power (ERP) some 0.6 dB higher than that of the
SPTN function and so enjoys a small advantage
in detection performance in noise limited cases.
Furthermore, the RTT function (and its resulting
beam pattern) is circularly symmetrical and so
remains constant irrespective of the platform roll
angle. The worst target detection performance
was obtained when using the uniform weighting
function on the transmitting array. Indeed the test
case of the uniform function on both transmission
and reception was found by both metrics to yield
the worst target detection capability by a large
margin.
Target detectability degraded as the proportion of

failed elements increased from zero to 5%. Failure
of the elements contributes towards increases in
the sidelobes, reduction in main beam boresight
gain, and hence reduction in detection performance.
Failed elements result in significant regions of
the range/velocity detection space of degraded
target detectability; however, the margins by which
detectability is degraded tended to be less than the
margins between detectability using the best and worst
array weighting functions. A failure of 5% of the
array elements resulted in modest, though meaningful,
degradations in target detectability. Therefore, 5%
would be an appropriate upper limit on the proportion
of failed elements.
These conclusions pertain to a reasonable sample

of operating scenarios which were designed to result
in clutter-limited detection conditions for medium PRF
operation. The authors believe that these conclusions
remain valid for different, though similar, scenarios
resulting in clutter-limited detection conditions.
Should the radar operate at substantially higher
altitudes and/or in look-up attitudes and/or in high
PRF modes, then detection is quite likely to become
noise limited. Noise-limited detection conditions
will result in different solutions for optimal PRF
values, FFT sizes, and numbers of coherent processing
intervals and may also lead to different solutions for
optimal array weighting functions.
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