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Abstract: During the last decade, radar imaging has been used in near-field scenarios where a cylindrical scan geometry is
required to properly illuminate the scan region, such as breast microwave radar imaging and microwave wood inspection.
Nevertheless, current cylindrical near-field radar image formation algorithms are not fast enough to provide the throughput
required by these novel applications. A real-time wavefront reconstruction approach for the formation of three-dimensional
cylindrical near-field radar images is proposed in this study. This technique parallelises the mapping procedures during the
reconstruction process in order to increase its computational efficiency. To further reduce the execution time of the proposed
approach, it was implemented in a general purpose graphic processing unit in order to take advantage of the computing
capabilities of this platform. The proposed method yielded accurate results when applied to simulated and experimental data
sets and yielded speed improvements of two orders of magnitude compared to conventional cylindrical near-field radar
reconstruction approaches.

1 Introduction and motivation

During the last three decades, cylindrical radar imaging has
proven to be a reliable tool for imaging and sensing a
number of scenarios [1–4]. The basis of this imaging
technology is the dielectric differences between the materials
that form the scan region propagation medium and the
targets present inside it [1]. In recent years, cylindrical scan
trajectories have been used in some novel near-field radar
applications, such as microwave wood inspection (MWI) and
breast microwave radar imaging (BMRI), because this
geometry better suits the shape of the scan regions in these
situations [5, 6]. As the irradiation is performed along the
scan trajectory, the target responses have different travel
times, resulting in the formation of non-linear signatures [7].
This makes it difficult to correctly determine the dimensions
and locations of the different scattering structures present in
the scan area. In order to properly visualise the targets
reflections, the collected data must be focused [5–8].

A number of techniques have been proposed to reconstruct
cylindrical near-field radar images. In general, these methods
can be classified as either time-shift techniques or wavefront
reconstruction approaches. Time-shift techniques perform a
shift-sum process over a set of regions of interest in the scan
area. Two examples of this approach are the confocal
mapping algorithm [5, 9] and the beamforming reconstruction

method [8]. Wavefront reconstruction approaches focus the
data by processing the spectrum of the collected responses
and transforming it from the spatial-temporal domain where it
is originally acquired to the spatial domain where it will be
displayed [7]. Although each method has advantages and
disadvantages of their own, time-shift techniques are simpler
to implement and debug, whereas wavefront reconstruction
approaches exhibit a higher signal-to-noise ratio (SNR) and an
increased focal quality [7].

A problem with cylindrical radar reconstruction approaches
is their execution time. Its computational complexity is of the
order of O(�n log �n), where �n is the input signal length,
resulting in execution times of the order of minutes per
scan plane when executed in a conventional multicore
Pentium CPU [10]. This can be an issue in the scenarios
such as the ones in which cylindrical near-field radar is
used, owing to the fact that a low execution time is required
to provide the high throughput that is needed [11]. In this
paper, the use of a single instruction multiple data (SIMD)
architecture is proposed to form real-time three-dimensional
(3D) radar images recorded in cylindrical near-field
scenarios using a wavefront reconstruction approach. In the
scope of this paper, an approach is considered to be real-
time if its reconstruction time is less than the data
acquisition time of a range profile, which is around 5 s.
This follows the standard definition, where a system or
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approach is considered to be real-time if it is able to update
information at the same rate as it receives data. The work
presented in this paper expands the work presented by the
authors in [12] into three fundamental areas. First, it
formulates a generalisation into a 3D scan geometry.
Second, the approach is expanded to a generic SIMD
computing architecture to allow the use of multiple
computing devices. Third, the performance of the proposed
method is evaluated using experimental datasets in order to
assess its feasibility in realistic scenarios.

The proposed approach uses a novel interpolation approach
that is executed in parallel, significantly reducing the
reconstruction time without compromising the spatial
accuracy and SNRs of the resulting images. Since each
point in the problem space can be processed independently,
the proposed technique was implemented using an approach
on a general purpose graphics processing unit (GPGPU)
to take advantage of the high-performance computing
capabilities of this platform. Originally used for computer
graphic applications, GPGPU devices are being increasingly
used for scientific applications, ranging from protein
folding to the finite-element analysis, because of their low
cost, high memory bandwidth and enormous arithmetic
capabilities [13–17]. The performance of the proposed
method was evaluated using a set of simulated and
experimental data sets. The execution time, SNR and spatial
accuracy of the reconstructed images were calculated in
order to assess the performance of the proposed technique.

2 Cylindrical SR imaging

2.1 Signal model

Let us consider a cylindrical scan geometry with M scan
planes defined along the z-axis and N scan locations
arranged in a circular pattern with a radius R at each plane.
The irradiating antenna is facing towards the centre of the
scan plane. T point scatters are assumed to be inside the
area delimited by the scan geometry. A waveform f (t) with
a bandwidth B, is sequentially radiated from each scan
location and the responses from the targets with the scan
area are recorded at the same position. This signal is
considered to have a length of L samples. For the scan
location at (R, u, z), the received signal can be expressed as

s(t, u, z) =
∑T

q=1

sqf t −
2Dq(u, z)

n

( )
(1)

where n is the medium propagation speed, sq and (rp, fq, zp)
are the reflectivity and location of the qth target, and

Dq(u, z) =
�������������������������������������������
R2 + r2

q + (zq − z)2 − 2Rrq cos (fq − u)
√

.

In cylindrical SR scenarios, target reflections present non-
linear signatures because of the different signal travel times
along the different scan locations [7] and the near field
distances between the targets and the scan geometry. As
illustrated in Fig. 1, this makes it difficult to assess the
locations and dimensions of the targets present in the scan
area. To properly assess the target dimensions and locations,
the data must be reconstructed. An effective way of doing
this is by using wavefront reconstruction methodology [18,
19]. The first step is to calculate the Fourier transform of (1)
along the t, z and u directions and compensate for the phase
and magnitude effects of the scan geometry. By using the
mathematical procedure described in [7] to compensate for

the compensated dataset, U(v, 1, kz), is given by

U (v, 1, kz)=
∑T

q=1

4sq · j(v, 1, kz)

× exp
−j

������������������
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z )r2
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�������������
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z )r2
q
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⎛
⎜⎝

⎞
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(2)

where 1 and kz are the spatial frequency counterparts of u of z,
respectively, k is the wavenumber, v ¼ 2pf, and j(v, 1, kz) is
the spectrum amplitude component in the (v, 1, kz) frequency
space.

The next step is to transfer the data from Up(v, 1, kz) to the
(kx, ky, kz) spatial frequency space, where kx and ky are the
spatial frequency counterparts of x and y spatial domains.

First, a magnitude filter given by
��������������������������
12/

��������������������
(4k2 − k2

z )R2 − 12
√√

is applied to correct for the variable density of the polar grid.
This filter was derived using the stationary phase [18]
principle and it is used to assure a one to one
correspondence between the responses in the Cartesian and
polar frequency spaces. Next, the inverse Fourier transform
of (2) is along 1 is calculated, yielding a function denoted as
Sc(v, u, kz), and the following mapping functions are used [7]

kur =
����������
4k2 − k2

z

√
(3)

kux = kur · cos(u) (4)

kuy = kur · sin(u) (5)

These mappings produce an unevenly sampled frequency
space, denoted as I(kux, kuy, kz), because the separation
between adjacent samples in k, kz and u is constant.
Nevertheless, conventional FFT techniques present
limitations when it comes to process this kind of frequency
space [18]. In order to process the compensated data using
standard Fourier methods, the evenly sampled frequency
space, (kx, ky, kz), is defined as follows

kx = ky = np/R for −N ≤ n ≤ N and n [ Z (6)

kz = m · 2p/(M ·Dz) for 0 ≤ m ≤ eM − 1 and m [ Z (7)

Fig. 1 Unprocessed 2D image from an experimental data set
containing a single target
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where dz is the distance between adjacent scan planes. Next,
the evenly sampled spectrum I(kx, ky, kz) is obtained by
interpolating the values of I(kux, kuy, kuz) at the points
defined in (kx, ky, kz). Finally, the 3D inverse Fourier
transform of I(kx, ky, kz) is calculated, yielding the 3D model
i(x, y, z). A more detailed explanation of the 3D cylindrical
holographic reconstruction technique is given in [7].

2.2 Interpolation of unevenly sampled spaces

The most computationally intensive portion of the 3D
wavefront reconstruction approach is the interpolation
process. In non-evenly sampled frequency spaces, the
interpolation procedure is performed using a series of
triangulation operations in which the values of (kux, kuy)
and (kur, kz) spaces are used to determine the basis that will
be used to calculate each element in (kx, ky, kz). This
approach is also known as Qhull interpolation [19].

The Qhull method can be described as follows. Consider
the two-dimensional (2D) case that leads to the formation
of each (kx, ky) plane, where we define a set {P1, P2, P3,
. . . , Pi, . . . , Pg}. Pi is the ith-ordered pair in each (kux, kuy)
plane and g ¼ L . N. A triangulation w is a set of A triples
of points (Pa, Pb, Pc), where a, b, c [ {1, 2, 3, . . . ,g} and
(Pa, Pb, Pc) are pairwise distinct such that for each triple,
the corresponding points are the vertices of a triangle with
the properties that each such triangle contains only those
three points of P and those are the vertices, that the
intersection of the interiors of any two triangles is empty,
and that the unions of those triangles is the complex hull of
P [19, 20]. For any set of points, there are almost always
several triangulations. To optimise this topological process, a
Delaunay triangulation algorithm is often used. This
approach optimises the triangulation process by evaluating
the smallest angle in each of the possible triangulations
present in the evaluated set [20]. This algorithm is described
in detail in [20]. After this step, various interpolation bases
can be used to generate a function I(kx, ky, kz) that describes
the behaviour of the data contained in (kux, kuy) over the
frequency values defined in (kx, ky). A 3D generalisation
of this approach is used to generate I(kx, ky, kz) the from
U(v, 1, kz).

Another possible approach to generate evenly sampled
spectra from unevenly sampled spaces is by using the
inverse non-uniform inverse FFT(NFFTH). This technique
performs a convolution process using a predefined kernel in
the frequency domain to generate the equidistant samples
from a set of non-evenly sampled locations. After this
estimation is performed, the inverseQ1 FFT of the evenly
sampled dataset is calculated. Finally, a deapodisation step
is performed using the time-domain representation of the
kernel in order to eliminate its effect. NFFTH approaches
have been widely used for a wide variety of reconstruction
problems, ranging from magnetic resonance imaging to
ultrasound tomography [21–25]. This technique yields
images with a comparable accuracy and focal quality when
compared with Qhull approaches when used to form radar
images [26].

3 SIMD interpolation

3.1 Description

Qhull approaches have an expected performance of
O(�n log �n), which in cylindrical SR imaging applications
usually results in execution times of 35 s to 1 min per

imaging plane when executed on a standard Pentium
multicore CPU [7]. The interpolation procedure is the most
computationally intensive portion of the reconstruction
process as the rest of the reconstruction takes less than
1% of the execution time. The order of complexity of
this operation is on the same order as the FFT, but the
additional execution time is caused by the fact that the
number of samples in (kx, ky, kz), (2(L 2 1) + 1)2 . M, is
generally much higher than the number of elements in the
(v, u, kz) space, since in the majority of the radar systems
L ≫ N. On the other hand, NFFTH approaches also have a
complexity of the order of, where is the number of points in
the original dataset [21]. Although these approaches can be
parallelised to increase the data throughput, they have only
been tested on datasets smaller (512 × 512 samples) than
the ones found in radar imaging scenarios and they are only
used for 2D resampling in each imaging plane [21]. Further
investigation is required to optimise the use of these
approaches for 3D cylindrical SR reconstruction.

In order to reduce the execution time of the reconstruction
process, an SIMD approach is proposed in this paper. SIMD
programming models are used to parallelise computationally
expensive procedures in order to reduce its execution time.
SIMD approaches can be easily implemented in GPGPU
devices, which are quite effective to tackle problems that
require a large number of interpolation operations since
they use specialised hardware for this purpose. GPGPU
devices process several data elements in parallel using
different threads running the same program, which we will
refer to as a kernel. A full description of the capabilities of
GPGPU computing is well beyond the scope of this paper,
we will only address the key points of the implementation
of the proposed approach on the GPGPU platform. If the
reader wants to further investigate about the potential of this
computing platform to solve complex Fourier imaging
problems, a very detailed description is given in [17, 21, 22].

Current GPGPU interpolation procedures are designed to
work only on evenly separated spaces. This fact, in addition
to its high number of branching operations, thus makes the
implementation of the Qhull approach on a GPGPU
platform very difficult. In order to take advantage of the
GPU computing capabilities, an interpolation approach that
works over an evenly spaced grid must be used. Let
consider the a discrete (2L + 1) × (2L + 1) × M frequency
space (kx, ky, kz) as defined in (6) and (7). According to the
inversion technique described in Section 2, after the effects
of the scan geometry are compensated, the collected data
must be transferred from the (v, u, kz) to the (kx, ky, kz)
space. To migrate the responses from each (k, kz) plane to
their corresponding d (kr, kz) space using an interpolation
approach that considers an evenly sampled space, we will
first define an auxiliary function

p(kr, kz) =
���������
k2

r + k2
z

√
(8)

kr = l · p/(L · dt) for 0 ≤ l ≤ L − 1 and l [ Z (9)

where dt is the sampling period of f (t). At this point, the value
of the U(v, 1, kz) along the evenly sampled points defined
by (kr, kz) can be calculated by interpolating over the
components U(v,1, kz) at the points specified in their
corresponding (p(kr, kz),kz) values, since data points in (v,
u, kz) are evenly sampled, yielding the intermediate
spectrum U(v, u, kz). Next, the polar coordinates of each
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point in (kx, ky) can be calculated as follows

c(kx, ky) =
���������
k2

x + k2
y

√
(10)

q(kx, ky) =

tan−1 (kx/ky), if kx . 0 and ky ≥ 0

tan−1 (kx/ky) + 2p, if kx , 0 and ky ≥ 0

tan−1 (kx/ky) + p, if kx , 0 and ky , 0
p/2, if kx = 0 and ky . 0
3p/2, if kx = 0 and ky , 0
0, if kx = 0 and ky = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

We can now define the auxiliary discrete frequency
space (r, w) where r and w are the ranges of c(kx, ky) and
q(kx, ky), respectively. The values of U(v, u, kz) at the
points contained in (r, w) can be calculated by using a
interpolation approach that considers evenly sampled data
points. This set of values will be denoted as Sc(r, w). Next,
we can map U(v, u, kz) into the (kx, ky, kz) frequency space
using the following function

I(a(r, w), b(r, w), kz) = �U (r, w, kz) (12)

where

a(r, w) = r · cos (w) (13)

b(r, w) = r · sin (w) (14)

Since (11) is the inverse of the mapping process described
in (5) and (6), and both relations have a one-to-one relation,
it is not difficult to prove that the a(r, w) and b(r, w) map
the points in (r, w) back into each (kx, ky) plane; therefore
I(a(r, w), b(r, w),kz) can be regarded as a single plane in
I(kx, ky, kz) and it does not have any gaps within its spectral
support band. Finally, the 3DQ1 IFFT of I(a(r, w), b(r, w),
kz) is calculated to properly visualise the reconstructed data
in the spatial domain. An illustration of how the proposed
interpolation approach is shown in Fig. 2. In this diagram,
the location of random samples in the (kx, ky) and (kr, kz)

planes is shown using different colours. Note how their
corresponding locations in the (kr, u) and (k, kz) spaces do
not fall exactly into a particular cell. The location of the
samples that are more likely to calculate their values is
denoted using a lighter version of the sample colours.

3.2 Implementation

Each location on the (kx, ky, kz) and (kr, kz) frequency spaces
is processed using an individual kernel. Owing to the size of
the problem domain, the global, constant and texture memory
structures of the GPGPU were used. The main reason that a
GPGPU platform was chosen as the computing platform for
the proposed approach is that the texture memory in this
kind of devices is able to perform a significantly fast linear
or nearest-neighbour interpolation fitting [27]. In contrast to
the other memory modules, Q1CUDA allows the user to use
floating numbers to address the elements residing in the
texture memory, also known as textels. When a fetch to a
non-integer address is performed, the returned value is the
result of the interpolation between the textels closer to
the requested address [27]. This property is used by the
proposed method to perform the interpolation processes
over the (kx, ky) and (kr, kz) planes.

The execution of the proposed method in a GPU platform
can be described step by step as follows:

1. Transfer the values of Sc(v, u, kz) from host to the device
texture memory, and the values of Dk ¼ 2p/(L . dt), Dz and
R from the device constant memory.
2. The variables I, kx, ky, r, w, c, kz, kr, U and p are then
defined in the GPU global memory.
3. A kernel is executed over a grid with L × M threads, Gr, z

to initialise the values of kz, kr and p(kr( gr), kz( gz)) as follows

kr(gr) = gr · Dk (15)

kz(gz) = gz · 2p/(M · Dz) (16)

p(kr(gr), kz(gz)) =
������������������
kr(gr)

2 + kz(gz)
2

√
(17)

∀(gr, gz) [ Gr,z

where gr and gz are the column and row indexes of the gth
element of Gr,z, and

gr = nr [ Z and 0 ≤ nr ≤ L − 1 (18)

gz = nz [ Z and 0 ≤ nz ≤ M − 1 (19)

This definition of kr( gr) and kz( gz) is equivalent to the one
given in (8) and (10) by making the index substitutions
gr ¼ l and gz ¼ m.
4. The locations of each sample in the (kx, ky) space are
initialised using a kernel that is executed over a grid
containing 2(L 2 1) + 1 × 2(L 2 1) + 1 threads, Gx,y This
kernel performs the following operations:
(a) Determines the values of kx and ky using the following
expressions

kx(gx) = (gx − N )p/R (20)

ky(gy) = (gy − N )p/R (21)

∀(gx, gy) [ Gx,y

where gx and gy are the column and row indexes of the gth
Fig. 2 Flow diagram of the proposed 3D GPU interpolation
algorithm
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element of Gx,y and

gx = nx [ Z and 0 ≤ nx ≤ 2(L − 1) (22)

gy = ny [ Z and 0 ≤ ny ≤ 2(L − 1) (23)

The previous definition of kx( gy) and ky( gy) is equivalent to
the one given in (6) by making the index substitutions gx or
gy equal to the n.
(b) Calculates the values of, r, w from the values of kx( gy)
and ky( gy) using (9) and (10)

r(kx(gx), ky(gy)) = c(kx(gx), ky(gy)) and

w(kx(gx), ky(gy)) = q(kx(gx), ky(gy)) ∀(gx, gy) [ Gx,y

(24)

5. A kernel is executed on a grid containing L × M × N
threads, Gr,u,y. This kernel performs the two tasks:
(a) Interpolate the values of U(p(kr( gr), kz( gz)), u( gu),
kz( gz)), where gu = nu [ Z and 0 ≤ nu ≤ N − 1, by
performing a texture memory fetch from Sc(v, u, kz) for
each ( gr, gu) component in Gr,u,y using their corresponding
p(kr( gr), kz( gz)) values as addresses.
(b) Perform a thresholding process to each element as
U(p(kr( gr), kz( gz)), u( gu), kz( gz)) follows (see (25))

where kmax ¼ Dk(L 2 1).

6. Interpolate the values in each (kx, ky) plane using a kernel
on a grid with 2(L 2 1) + 1 × 2(L 2 1) + 1 × M threads, Gx,

y, z. This kernel performs two operations:
(a) Interpolate the values of I(kx( gx), ky( gy), kz( gz)) by
performing a texture memory fetches from U(p(kr( gr),
kz( gz)), u( gu), kz( gz)) using the corresponding values
r(kx( gx), ky( gy)) and w(kx( gx), ky( gy)) of each element in
Gx,y,z.
(b) Apply a thresholding criterion to each element as follows

I (kx(gx), ky(gy), kz(gz))

=
I(kz(gx), ky(gy), kz(gz)) if (kx(gx), ky(gy), kz(gz))≤ 2kmax

0 otherwise

{
(26)

7. The 3D IFFT of I(kx( gx), ky( gy), kz( gz)) is calculated and
the result is then transferred to the host memory for further
processing.

A flow diagram of this process is displayed inQ2 Fig. 3.

4 Simulation and experimental setup

The performance of the proposed method was assessed using
both simulated and experimental data sets. The simulated data
sets were generated using the radar simulator proposed by the
authors in [28]. The accuracy of this simulation technique on
high-contrast scenarios has been proved using finite
difference time domain simulation techniques. The datasets
had four different sizes 127 × 72 × 11, 251 × 72 × 11,
501 × 150 × 16 and 1001 × 150 × 16 points and
contained white Gaussian noise with a power of 270 dBm.

A stepped frequency continuous wave (SFCW) with a
bandwidth of 11 GHz (centre frequency of 6.5 GHz) and a
power of 0 dBm was used as the radiated waveform. In
these simulated data sets, the radius of the scan region was
10 cm for the 127 × 72 × 11 and 251 × 72 × 11 datasets
and 15 cm for the rest. The number of targets were
randomly assigned between one and five.

The experimental data in the first three experiments were
collected using the SFCW Radar system described in [7].
The system consists of a 360B wiltron network analyser
and an Q1AEL H horn antenna with a length of 19 cm and a
width of 12 cm. This antenna is mounted on a custom
automated mechanism in which the phantom is rotated to
emulate a cylindrical scan geometry. A SFCW with a
bandwidth of 11 GHz (1–12 GHz) was used in the first
three experiments. The system was characterised by
recording the antenna responses inside an anechoic
chamber. This reference signal was subtracted from the
experimental data in order to eliminate the distortions
introduced by the system components. The data acquisition
setup was surrounded by electromagnetic wave absorbing
material in order to reduce undesirable environment
reflections. To assess the performance of the proposed
approach in scenarios where a lower dielectric contrast is
present, a fourth experiment was performed using a
preclinical Q1BMR data acquisition system. This system was
formed by a plexi glass tank of 56 × 56 × 40 cm with a
Vivaldi antenna attached to its posterior wall. This tank was
filled using canola oil to provide an impedance matching
between the antenna and the breast phantom. A Vivaldi
antenna was connected to the Q1VNA via a 50 V cable. This

Fig. 3 Diagram of the mapping process

a (kr, kz) to (v, k2)
b (kx, ky) to (kr, u)

U (p(kr(gr), kz(gz)), u(gz), kz(gz)) =
U (p(kr(gr), kz(gz)), u(gu), kz(gz)) if U (p(kr(gr), kz(g)), u(gu), kz(gz)) ≤ 2kmax

0 otherwise

{
(25)
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antenna was manufactured using two layers of Arlon–Diclad
527 with permittivity 2.65 and loss tangent of 0.0022. The
antenna was mounted into a waterproof acrylic mounting
structure. A polyethylene reservoir was placed under the
tank as a safety measure to prevent any accidental oil spills.
Owing to the properties of the antenna, which has a support
band of 1–6 GHz, an SFCW of 5 GHz with a centre
frequency of 3.5 GHz was used in this setup.

The data were reconstructed using a 2.66 GHz PC with
Intel i7 processor with 12GB RAM and two Nvidia Tesla
C1060 GPUs using Microsoft Visual Studio 7.0 C++ as
the development environment. Two versions of the
proposed GPGPU algorithm were implemented. The first
version used only 1 T device while the second one used
both GPU cards. To assess the performance of the proposed
technique when executed on a standard Intel Pentium
multicore processor, a CPU version of the proposed
approach version was implemented using a conventional
lookup table (LUT) interpolation approach to emulate the
texture memory fetch operation [29]. This technique has a
computational complexity of [29]. In both the CPU and
GPU approaches, a linear fitting was used since the
previous work done by the authors show that it yields high
SNR and spatial accurate images [10]. In all the
implementations, the NVidia CUFFT library is used to
calculate the Fourier transform of the processed datasets.
The average transfer time between the host and the device
memory for the GPGPU platform was 5.01 ms.

The phantom used in the first three experiments consisted
of a polyvinyl chloride (PVC) pipe filled with synthetic
foam disks. The PVC pipe has an inner diameter of 10 cm
and its length is 90 cm. Aluminium ovoids were used as
targets. The length of the ovoids minor and major axis was
1.2 and 3 cm, respectively. The phantom materials present
almost no variation in their dielectric permittivity values in
the 1–12 GHz frequency range. The final experiment was
collected using a phantom whose dielectric properties
mimic the average values of human breast tissues. The scan
region is formed by glycerin stored inside a styrene-nitril
cylinder with a diameter of 13 cm, and the synthetic tumor
was formed by a mixture of 85% saline and 15% fructose
injected inside a semi-spherical capsule with a diameter of
7 mm. Canola was used as a matching medium. The skin
layer was created by covering the container with a 2 mm
layer of a mixture formed corn syrup and agar gel described
in [30]. To simulate the average dielectric properties of
fibroglandular structures, a mixture of 50% wheat flour and
50% saline was used. A melamine coat was used to keep
the glycerine from mixing with the fibroglandular tissue
mixture. To assess if this coat modified the responses from
the wheat–saline mixture, two ovoids with a diameter of
3.5 cm and a height of 4 cm were fabricated and one of
them was covered using the waterproof coat. A set of 30
scans was collected using for each ovoid at different
locations within the phantom and it was found that the coat
did not significantly affect the responses of the simulated
fibroglandular tissues. The dielectric permittivity values of
the materials used in the support base and the phantoms are
shown in Table 1. A photograph of the data acquisition
setups can be seen in Fig. 4.

The data collected from four experimental setups were used
to determine the feasibility of the proposed approach and
assess its spatial accuracy and image quality compared to
the Qhull approach. The experimental data acquisition
process was performed by rotating the phantom at 58
intervals for a total of 72 positions. In the first three

experiments, the distance between the antenna and the
centre of the phantom was set to 70 cm in order to allow
the antenna footprint to illuminate the entire phantom and
reduce undesirable interferences of antenna early time
artefacts. Along the z-axis, the data were acquired using 15
scan planes with a separation of 1 cm. In the fourth

Table 1 Relative permittivity values of the materials used in the

phantom structure and support base

Material Permittivity value (3 GHz)

PVC 3.2

air 1

maple wood 1.55–1.7

skin 35

agar–corn syrup gel 32

low density breast tissue 9

glycerin 8.9

tumour 55

fructose–saline mixture 53

canola oil 2.5

styrene–acrylonitrile 2.6

Fig. 4 Photograph of the data acquisition setup Q3
a Photograph of the 3D SR data acquisition setup
b Photograph of the BMR data acquisition setup
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experiment, the distance between the antenna and the centre
of the phantom was 20 cm. In this scenario, the early time
responses are not as strong as the conductivity of the
propagation medium (0.035 S/m) introduces higher losses
than the ones present in air.

The performance of the proposed method was
quantitatively assessed by calculating the spatial accuracy,
SNR and root-mean-square (RMS) error values of the
reconstructed images. The spatial accuracy was determined
by calculating the difference between the target location and
the centroids of their signatures in the reconstructed images.
The SNR of the 3D models was calculated as follows

SNR = 20 · log10

∑T

q=1

Gq,3 dB/(T · sw)

( )
(27)

where Gq,3 dB is the magnitude of the 3 dB point of the qth
target signature in the 3D model generated by each
algorithm and sw is the standard deviation of the
background noise. In the following discussion, the centre of
the phantom will be denoted as the origin, and the images
show the normalised energy of the reconstructed data.

The data collected from four experimental setups were
used to determine the feasibility of the proposed approach
and assess its spatial accuracy and image quality compared
to the Qhull approach, its CPU–LUT counterpart and
the current standard technique for cylindrical SR image
reconstruction, confocal mapping [5]. In all the experiments,
the separation between the targets was at least equal to twice
the value of the spatial resolution along the range direction.
In the following discussion, the images formed by the single
GPU implementation are shown, as no qualitative or
SNR and spatial accuracy differences could be found
between the two GPU versions of the proposed method.

5 Results and discussion

First, the performance of the proposed approach was evaluated
using four groups of 30 simulated datasets. Each group
corresponded to one of the four sizes previously mentioned,
127 × 72 × 11, 251 × 72 × 11, 501 × 150 × 16 and
1001 × 150 × 16 points. The datasets were reconstructed
using the single and dual GPGPU versions of the proposed
approach. Additionally, to compare the performance of the
proposed method against the conventional CPU-based
interpolation procedures, the data were processed using a
CPU version of the proposed method and a wavefront
reconstruction approach that used the Qhull approach. The
resulting execution times are shown in Table 2. All the
execution times reported in this work include the transfer
time between the GPU and the CPU. Note how the
execution time of the GPGPU technique is at least two
orders of magnitude faster than the Qhull interpolation

method. The speed improvement compared with the CPU
implementation is about 28 times. Additionally, note how
the speed increases when the two GPU devices are used in
around 2.05 times. This is because that each plane can be
processed independently of the others in each of the two
interpolation processes; thus dividing the computational load
between the two graphic devices further reducing the time
required to reconstruct a 3D image. Additionally, the SNR
and spatial accuracy differences between the proposed
technique were compared and the Qhull approach was
calculated and tested for statistical significance using the
Student’s t-test. No significant differences (P , 0.05) were
found in the images formed from the simulations.
Additionally, no significant differences (P , 0.05) could be
found between the SNR and spatial accuracy values of the
images formed from simulated datasets using the single and
dual GPU implementations of the proposed method.

Next, the experimental feasibility of the proposed method
was assessed using four experimental datasets. The setup in
experiment 1 only contained one target was present and it is
shown in Figs. 5a–c. To make it easier to visualise the
performance of the proposed method, the axial and coronal
cross-sections of each reconstructed target are displayed. To
better assess the location and dimensions of the target
signatures, the phantom surface was removed using the
method proposed by the authors in [31]. The axial and
coronal images of the target signature generated by the
proposed method are shown in Figs. 5d and e. The results
yielded by the Qhull approach can be seen in Figs. 5f
and g. The axial and coronal cross-sections obtained using
the CPU version of the proposed method are illustrated in
Figs. 5h and i. Finally, the axial and coronal images
generated using the confocal mapping approach are shown
in Figs. 5j and k. The SNR of the image formed using the
proposed approach in this experiment was 8.81 dB, which
is slightly larger than the values obtained for the images
formed using the Qhull, CPU–LUT and confocal mapping
approaches (8.77, 8.8 and 2.94 dB, respectively).

The setup used in experiment 2 is shown in Figs. 6a–c. The
axial and coronal images generated by the proposed approach
are shown in Figs. 6d and e. The resulting cross-sections of the
target responses formed by the Qhull approach and CPU–
LUT approaches are shown in Figs. 6f and g and Figs. 6h
and i, respectively. Finally, the axial and coronal views of
the target responses obtained from processing the dataset
using the confocal mapping algorithm are shown in
Figs. 6j– l. Note how in all the reconstructed images the
locations of the reconstructed target signatures are consistent
with their locations on the experimental setup. The image
reconstructed using the proposed method had an SNR of
8.5 dB. The SNR of the images produced using the Qhull
and the CPU–LUT approach were 8.48 dB for both. The
SNR for the 3D image generated using the confocal
mapping algorithm was 3.36 dB.

Table 2 Execution times of the 3D wavefront reconstruction approach for cylindrical scan geometries using the Qhull approach and the

CPU, single-GPU and multi-GPU versions of the proposed approach

Technique/size 127 × 72 × 11 251 × 72 × 11 501 × 150 × 16 1001 × 150 × 16

Qhull 7.81 27.5 465.47 1004.67

proposed method CPU 1.65 3.85 39.56 190.8

proposed method single GPU 0.034 0.124 1.52 4.34

proposed method dual GPU 0.016 0.060 0.74 2.11

All times are in seconds
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Fig. 5 Experimental feasibility of the proposed method was assessed using four experimental datasets in experiment one

a Axial view of the phantom setup in experiment one
b Coronal view of the phantom setup in experiment one
c Sagital view of the phantom setup in experiment one
d Axial view of the reconstructed target signature using the proposed method
e Coronal view of the reconstructed target signature using the proposed method
f Axial view of the reconstructed target signature using the Qhull approach
g Coronal view of the reconstructed target signature using the Qhull approach
h Axial view of the reconstructed target signature using the CPU–LUT approach
i Coronal view of the reconstructed target signature using the CPU–LUT approach
j Axial view of the reconstructed target signature using the confocal-mapping approach
k Coronal view of the reconstructed target signature using the confocal-mapping approach
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The setup used in experiment 3 is displayed in Figs. 7a–c.
The results of the proposed approach and are shown in
Figs. 7d–g. The SNR of the image yielded by the proposed

method was 6.72 dB. The axial and coronal target images
produced by the Qhull approach are shown in Figs. 7h–k.
The results of the CPU–LUT and confocal mapping

Fig. 6 Experimental feasibility of the proposed method was assessed using four experimental datasets in experiment two

a Axial view of the phantom setup in experiment two
b Coronal view of the phantom setup in experiment two
c Sagital view of the phantom setup in experiment two
d Axial view of the reconstructed target signatures using the proposed method
e Coronal view of the reconstructed target signatures using the proposed method
f Axial view of the reconstructed target signatures using the Qhull approach
g Coronal view of the reconstructed target signatures using the Qhull approach
h Axial view of the reconstructed target signatures using the CPU–LUT approach
i Coronal view of the reconstructed target signatures using the CPU–LUT approach
j Axial view of the reconstructed target signatures using the confocal mapping approach
k Coronal view of the first reconstructed target signatures using the confocal mapping approach
l Coronal view of the second reconstructed target signatures using the confocal mapping approach
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Fig. 7 Experimental feasibility of the proposed method was assessed using four experimental datasets in experiment three

a Axial view of the phantom setup in experiment three
b Coronal view of the phantom setup in experiment three
c Sagital view of the phantom setup in experiment three
d Axial view of the reconstructed first target signature using the proposed method
e Coronal view of the reconstructed first target signature using the proposed method
f Axial view of the reconstructed second target signature using the proposed method
g Coronal view of the reconstructed second target signature using the proposed method
h Axial view of the reconstructed first target signature using the Qhull approach
i Coronal view of the reconstructed first target signature using the Qhull approach
j Axial view of the reconstructed second target signature using the Qhull approach
k Coronal view of the reconstructed second target signature using the Qhull approach
l Axial view of the reconstructed first target signature using the CPU–LUT approach
m Coronal view of the reconstructed first target signature using the CPU–LUT approach
n Axial view of the reconstructed second target signature using the CPU–LUT approach
o Coronal view of the reconstructed second target signature using the CPU–LUT approach
p Axial view of the reconstructed target signatures using the confocal mapping approach
q Coronal view of the reconstructed first target signature using the confocal mapping approach
r Coronal view of the reconstructed second target signature using the confocal mapping approach
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approaches are shown in Figs. 7l–o and Figs. 7p–r,
respectively. The SNR of the 3D models generated by the
Qhull, CPU–LUT, and confocal mapping methods were
6.45, 6.7 and 2.93 dB, respectively.

The experimental setup in experiment 4 is shown in
Figs. 8a and b. The image produced by the proposed
approach is shown in Fig. 8c. The results of using the Qhull
approach and the CPU version of the proposed approach
are shown in Figs. 8d and e. The SNR values of these
images are 5.58 and 5.57 dB, respectively. The image
generated by the confocal mapping approach is shown in
Fig. 8f. This image has an SNR of 2.13 dB. The SNR
values from the images formed using the confocal mapping
approach are consistent with the values reported in previous
studies [9]. Additionally, note how there are no high
magnitude artefacts in the images formed using a wavefront
reconstruction-based approach. The locations and position
error of the target signatures in each experiment are shown
in Table 3. The SNR values are summarised in Table 4.
The RMS error between the proposed method, the Qhull

Fig. 8 Experimental feasibility of the proposed method was assessed using four experimental datasets in experiment four

a Axial view of the phantom setup in experiment four
b Reconstructed model from the data collected in experiment four using the proposed method
c Reconstructed model from the data collected in experiment four using the Qhull approach
d Reconstructed model from the data collected in experiment four using the CPU–LUT version of the proposed method
e Reconstructed model from the data collected in experiment four using the confocal mapping approach

Table 4 SNR values in each experiment

Experiment Qhull,

dB

Proposed

method, dB

CPU–LUT,

dB

Confocal

mapping,

dB

1 8.77 8.81 8.8 2.94

2 8.48 8.5 8.48 3.36

3 6.45 6.72 6.7 2.93

4 5.58 5.57 5.57 2.13

Table 5 RMS difference values in each experiment

Experiment Qhull Confocal mapping

1 2.5 × 104 2 × 103

2 7.85 × 105 2.2 × 103

3 1.14 × 104 2.8 × 103

4 1.72 × 106 2.7 × 103

Table 3 Spatial error values obtained in each experiment

Target Target location, cm Qhull error, mm Proposed method

error, mm

CPU–LUT error, mm Confocal mapping

error, mm

1a 20.5, 2.2, 10 1.8, 2, 0.5 1.8, 2, 0.5 1.8, 2, 0.5 20.1, 28, 20

2a 2.6, 0.63, 12 1.2, 0.3, 0 1.2, 0.3, 0 1.2, 0.3, 0 23, 16, 240

2b 22.1, 0.63, 12 1, 0.3, 0 1, 0.3, 0 1, 0.3, 0 0.1, 50, 240

3a 2.6, 0, 11 1.2, 0, 0 1.2, 0, 0 1.2, 0, 0 0, 14. 230

3b 0, 2.6, 5.5 0, 1.2, 5 0, 1.2, 5 0, 1.2, 5 0.5, 2.4, 25

4a 4.26, 1.7 5, 0.2 5, 2 5, 2 13, 3

IET Radar Sonar Navig., pp. 1–13 11
doi: 10.1049/iet-rsn.2011.0097 & The Institution of Engineering and Technology 2012

www.ietdl.org



approach and the confocal mapping algorithm are displayed
in Table 5. The execution times for each dataset using
the proposed method, its CPU counterpart and the Qhull
approach are illustrated in Table 6.

6 Conclusions

In this paper, a real-time 3D reconstruction approach for
radar datasets recorded in near-field cylindrical scan
geometries was proposed. The proposed algorithm is based
on a novel interpolation technique that does not require a
triangulation procedure, reducing its computational
complexity. Since the proposed technique is easily
parallelisable, it was implemented on a GPGPU platform in
order to take advantage of the arithmetic capabilities and
memory bandwidth of these devices. The performance of the
proposed method was assessed using experimental data sets
collected from phantoms that mimic cylindrical radar imaging
scenarios with high and moderate dielectric contrast between
the propagation media and the targets.

Compared with the results obtained using the Qhull
approach, the images generated by the proposed technique
using experimental datasets had a similar spatial accuracy,
slightly better SNR values and a reduced execution time.
The proposed method generates images with noticeable
improvements in SNR and spatial accuracy. Furthermore,
the proposed method did not introduce any discernible
artefacts in the reconstructed datasets. The acceleration
provided by the GPGPU platform solved one of the most
important shortcomings of wavefront reconstruction
approaches when compared to confocal mapping methods,
which was their longer execution time.

The proposed approach is capable of generating 3D images
in real-time for datasets with dimensions similar to the ones
used in BMRI and MWI scenarios. When executed on a
single GPU, the proposed approach achieved a speed
improvement of 160 times compared to conventional
interpolation techniques for non-evenly sampled spaces, and
28 times compared with its CPU-based counterpart.
Additionally, a second implementation of the proposed
algorithm that uses two GPGPU devices yielded a speed
improvement of 2.05 times compared to the single GPGPU
version, suggesting the potential of multi-GPGPU platforms.
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