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Abstract: This paper presents the lateral acceleration control design of non-linear missile
model using the multiple single objective Pareto sampling method. The LTI controller
design for the uncertain plants is carried out by minimising gain-phase margin and
tracking frequency domain based performance objectives. The Pareto optimal solutions
(corresponding to a given set of weight vectors) are obtained. The selected solution, as
illustration, is analysed. The gain-scheduling controller is obtained by the interpolation of
zeros, poles and gains, where the smooth deterministic transtion rule is implemented using
the TS fuzzy model. The non-linear simulation results show that the selected interpolated
controller is a robust tracking controller for all perturbation vertices. c©2004 IFAC
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1. MISSILE MODEL AND AUTOPILOT
REQUIREMENTS

1.1 Non-Linear Model

The missile model used in this study is taken from
Horton’s MSc thesis (Horton, 1992). It describes a 5
DOF model in parametric format with severe cross-
coupling and non-linear behaviour. This study will
look at the reduced problem of a 2 DOF controller
for the lateral motion (on the xy plane in Fig. 1). The
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Fig. 1. Airframe axes and nomenclature.

airframe is roll stabilised (λ = 45◦), and no coupling

is assumed between pitch and yaw channels. With
these assumptions, the equations of motion are given
by

v̇ = yv(M,σ)v + yζ(M,σ)ζ − Ur,

=
1

2m
ρV S(Cyv

v + V Cyζ
ζ) − Ur, (1)

ṙ = nv(M,σ)v + nr(M,σ)r + nζ(M,σ)ζ,

=
1

2Iz

ρV Sd(Cnv
v +

1

2
dCnr

r + V Cnζ
ζ), (2)

ay = v̇ + Ur, (3)

where v the lateral velocity, r the body rate, ζ the
rudder fin deflections, U the forward velocity and ay

the lateral acceleratioon at the centre of gravity c.g. are
defined in figure 1. yv , yζ are semi-non-dimensional
force derivatives due to lateral velocity and fin de-
flection. nv , nr, nζ are semi-non-dimensional force
derivatives due to lateral velocity, body rate and fin de-
flection. The aerodynamic derivative Cyv

, Cyζ
, Cnv

,
Cnr

and Cnζ
are the function of Mach numberM and

incidence angle σ (≈ v/U for U � v). They are eval-



uated by interpolating the discrete data points obtained
from the wind tunnel experiments. These interpolated
formulas and other relevant physical parameters are
summarised in table 1 and 2.

Symbol Meaning Value
a Speed of sound 340 m/s
ρ Air density 1.23 kg/m3

d Reference diameter 0.2 m
S Reference area 0.0314 m2

m Mass 150 kg full
100 kg all burnt

Iz Lateral inertia 75 kg · m2 full
60 kg · m2 all burnt

xcg Centre of gravity 1.3 + m/50

xcp Centre of pressure 1.3 + 0.1M + 0.3|σ|

xf Fin centre of pressure 2.6 m
sm Static margin (xcg − xcp)/d

sf Fin moment arm (xcg − xf )/d

Table 1. Physical parameters.

Corresponding Aerodynamic Interpolated formula
force or moment derivative
Side force Cyv −26 + 1.5M − 60|σ|

Cyζ
10 − 1.4M + 1.5|σ|

Yawing moment Cnr −500 − 30M + 200|σ|
Cnv smCyv

Cnζ
sf Cyζ

Table 2. Aerodynamic derivatives.

1.2 Airframe Transfer Function

By linearising the state and output equation (1)-(3)
about an operating point gives body rate and accel-
eration transfer functions of

Prζ
(s) =

nζs − (nζyv − nvyζ)

s2 − (yv + nr)s + (Unv + yvnr)
, (4)

Payζ
(s) =

yζs
2 − yζnrs − U(nζyv − nvyζ)

s2 − (yv + nr)s + (Unv + yvnr)
. (5)

The weathercock mode is given by the denominator
of equation (4) and (5) and, with typical semi-non-
dimensional derivatives, shows the polynomial to be
lightly damped with a weathercock frequency that is
dominated by the term Unv (Horton, 1995).

1.3 Autopilot Configuration

The lateral autopilot configuration used in this paper is
shown in Fig. 2, where F (s) = 98700

s2+445s+98700 is the
fin servo dynamics, Hr(s) = 253000

s2+710s+253000 is the
rate gyro dynamics, and Hay

(s) = 394800
s2+890s+394800 is

the lateral accelerometer dynamics. The accelerometer
is placed at a position displaced from the missile’s
c.g., 0.7 m aft the nose. This produces measured
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Fig. 2. 2 DOF autopilot configuration.

acceleration aym
that contains component of angular

acceleration of

aym
= ay + laṙ, (6)

where la is the accelerometer moment arm from the
c.g. The control structure incorporates a lag-lead in the
error limb and is closed around acceleration feedback
with body rate feedback used to improve the closed-
loop stability. With an additional prefilter, there is no
direct relationship the stability margins of the feed-
back system and its time-domain response (in practice,
it is very important to have it). The autopilot is de-
signed by setting Kr the gyro gain, C(s) the lag-lead
compensator andD(s) the prefilter to have acceptable
closed-loop frequency-domain tracking performances.

DefinePayr
(s) = ay(s)/r(s),G(s) = −C(s)F (s)/(1−

KrF (s)Prζ
(s)Hr(s)), and H(s) = (lasP−1

ayr
(s) +

1)Hay
(s). The following key transfer functions will

be used throughout:

1. The open loop transfer function

L(s) = G(s)P (s)H(s). (7)

2. The sensitivity function

S(s) =
1

1 + L(s)
. (8)

3. The tracking transfer function

T (s) = D(s)G(s)Payζ
(s)S(s). (9)

1.4 Closed-Loop Performance Specifications

The autopilot is required to track a lateral accelera-
tion demand ayd

over the whole flight envelope (the
Mach number is seen to range from 1.8 to 3.9), where
|ayd

| ≤ 500 m/s2 is constrained by limitations on the
airframe’s structural integrity. It must also be as robust
to the variation in fuel state and airframe parameter es-
timation errors (Δxcp

,ΔCyv
,ΔCyζ

,ΔCnr
= ±5%).

A list of performance specifications (for a step input)
is given in the mixed time- and frequency-domain
using familiar figures as follows:

1. Bandwidth ω−3 dB = 40 rad/s.
2. Settling time variation |δts

| ≤ 0.05 s.
3. Steady state error ess ≤ 10 %.
3. Damping ratio 0.6 ≤ ζay

≤ 1.0.
4. Gain margin GM ≥ 9 dB, Phase margin PM ≥

40◦.



2. DESIGN OF LATERAL MISSILE AUTOPILOT

2.1 Operating Regime Approach

Recall that the missile autopilot must produce the
correct control characteristics over a wide range of
operating conditions which effect aerodynamic char-
acteristics. However it is usually impossible to design
a LTI feedback system to achieve this. Of course,
with the non-linear controller whose parameters are
functions of the operating points, the design problem
is much more difficult. Nevertheless, the operating
regime based approach, where a number of standard
LTI controllers are designed to meet the desired stabil-
ity, performance and robustness criteria locally, offers
an engineering-friendly solution to this design prob-
lem.

Using the data of section 1.1, the lateral acceleration
transfer function (5) can be approximated to

Payζ
(s) ≈

−Unζyv

s2 + Unv

(10)

(Horton, 1995). We take an ad-hoc approach to the
decomposition of operating envelope. It is desired that
the operating regions are overlapped, and the migra-
tion of parameterised variables from one operating
region to another is as small as possible. Further obser-
vation shows that the contours of surface−Unζyv can
be closely approximated by a set of parallel straight
lines (see figure 3). Similar results are found for Unv .
However, the resulting slopes for both −Unζyv and
Unv are different.
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Fig. 3. Contours of −Unζyv .

Suppose a number of partitions is by trial and error
given, says 9. From figure 3, it is possible to partition
the operating envelope with a set of 9 parallel lines that
minimises the migration of both −Unζyv and Unv

from one operating region to another. However, the
compromise solution is to be expected as the gradients
of −Unζyv and Unv are different. In this study, the
difference is measured in logarithmic space. Using an
optimisation algorithm described in section 3.1, the
optimum decomposition is shown in figure 4. Note
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Fig. 4. Decomposition of operating envelope.

that if the design is not feasible, the operating envelope
will need to be repartitioned.

2.2 Measures of Performance

2.2.1. Stability Requirements
Asymptotic Stability
The stability of the closed-loop system can graphi-
cally be checked using the Nyquist plot or Nichols
chart. However, it is numericly difficult. In this pa-
per, the stability of the closed-loop system is simply
determined by solving the roots of the characteristic
polynomial. The function

C0 =

{
0 if S(s) is asymptotically stable,
1 otherwise, (11)

Right Half Plane Pole-Zero Cancellation
To ensure internal stability, we must guarantee not
only stability of S(s) but also that there is no RHP
pole-zero cancellation when L(s) is formed. One way
to achieve this is it is desired that minimum phase and
stable controller C(s) is designed.

2.2.2. Frequency Domain Performance Requirements
In this paper, the performance specifications are mod-
elled in the frequency domain requirements which
have a convenient graphical interpretation in terms
of tracking ratios. With the design objectives given
in section 1.4, the controller’s performances can then
be measured by evaluating the following robustness
assessment functions:

Gain and Phase Margins
A look at the inverted Nichols chart in figure 5 qual-
itatively reveals that gain and phase margins decrease
as the values of the contours of constant |S(jω)| in-
creases. For instance, if |S(jω)| ≤ 3 dB, then GM >
10 dB and PM > 40◦ are guaranteed. (Sidi, 2001)

Adopting these relationships, the gain-phase margin
based cost function can be given by

J1 = max
ω

|S(jω)| − M0

Mr − M0
, (12)
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Fig. 5. Inverted Nichols chart.

where M0 = −6 dB, and Mr is the admissible
resonant peak of the sensitivity function S(jω).

Tracking Error
The system’s tracking performance specifications are
based upon satisfying all of the frequency forcing
functions |BU (jω)| and |BL(jω)| shown in figure 6a.
They represent the upper and lower bounds of track-
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Fig. 6. Ideal and augmented tracking models.

ing performance specifications whom an acceptable
response |T (jω)| must lie within. However, the dif-
ference between |BU (jω)| and |BL(jω)| is required
to increase with increasing frequency. This can be
achieved by augmentingBU (s) with a zero as close to
the origin as possible without significantly affecting
the time response (see figure 6b). The spread can be
further increased by similarly augmenting BL(s) with
a real negative pole. (Houpis and Rasmussen, 1999)

Following this design concept, the tracking boundaries
based cost function can be defined by

J2 = max
ω

{
|T (jω)| − |T0(jω)|

|BU (jω)| − |T0(jω)|
,

|T0(jω)| − |T (jω)|

|T0(jω)| − |BL(jω)|

}
,(13)

where |T0(jω)| is the nominal tracking model.

3. EA-BASED CONTROLLER DESIGN

3.1 Multi-Objective Evolutionary Optimisation Algorithm

Basic scheme of the multi-objective evolution strategy
((μ + λ)-ES) used in this paper is as that described in
(Deb, 2001). Instead of, using non-dominated ranking,
finding all Pareto solutions, it locates some specific
solutions on the Pareto front corresponding to a given
set of target vectors (e.g. weighted Min-Max) V =
{v1, . . . ,vT } (Hughes, 2003). Each generation, T
weighted Min-Max distances are evaluated for all μ +
λ solutions, whose results are held in a matrix S =
(sij). Note that

sij = max
j=1,...,4

w
(k)
j O

(k)
i , (14)

where w
(k)
j = 1/v

(k)
j and O

(k)
i is ith individual’s kth

objective value. Each column of the matrix S is then
ranked, with the best score population member on the
corresponding target vector being given a rank of 1,
and the worst a rank of μ + λ. The rank values are
stored in a matrix R. Now R can be used to rank the
population based on the number of target vectors that
are satisfied the best.

The primary advantages of this method is such that the
target vectors can be arbitrary generated focusing on
the interested regions. Also the limits of the objective
space and discontinuities within the Pareto set can be
identified by observing the distribution of the angular
errors (θi = cos−1

v̂j · Ôi) across the total weight set.

3.2 Robust Design Methodology

For each of the 6 operating regions, the employed
controller transfer functions are of the forms Kr,
C(s) = Kp

(s+zp)
(s+pp) and D(s) = Kd

s+pd
. The optimi-

sation variables straightforwardly are Kr, Kp, zp, pp,
Kd and pd. Likewise classical loop-shaping, these set
of parameters are then translated into the logarithmic
space, thus

x = [K̄r, K̄p, z̄p, p̄p, K̄d, p̄d], (15)

where K̄r = log10 Kr, K̄p = log10 Kp, etc..., is now
formed a variables vector for the ES. This allows quite
large ranges of all the parameters to be explored, and
proves to speed up the convergence of the ES (Chen
and Ballance, 1999).

It has to be noted that robustness analysis of an un-
certain system can be computationally very expensive.
In fact, (Ackermann et al., 1993) states that using the
vertex points is enough in robust controller design for
most practical systems. To reduce the computational
cost, the similar optimisation process as describe in
(Söylemez, 1999) is followed, where addition vertices
are added in each loop until an optimal solution satis-
fies the search criteria.



3.3 Controller’s Parameters Tuning

Consider the operating regionQ5 in figure 4. Pursuing
the method described in section 3.1 (using (100+100)-
ES), the Pareto-optimal solutions corresponding to a
given set of weight vectors (0.1 ≤ w(k) ≤ 1.0) are
shown in figure 7, where the limits and discontinuities
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Fig. 7. Pareto-optimal solutions for the given control
structure.

within the Pareto set are indicated by where the solu-
tions are missing. In this case, 7 runs are needed which
results in the total 28 vertices used in the optimisation
process.

The trade-offs can now be analysed in which the pre-
ferred solution will depend on the designer choice.
Suppose the unity weighted min-max solution is cho-
sen as a decision choice. The results corresponding to
the minimising objectives are shown in figure 8 and 9.
These reveal that the controller is locally a robust con-
troller for all perturbation vertices. The step response
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of the selected vertex systems are shown in figure 10.

4. ROBUST GAIN-SCHEDULED CONTROLLER

4.1 Fuzzy Membership Function

It is not natural to have a sudden change between
the operating regimes. In this paper, a smooth deter-
ministic transition between the operating regimes is
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Fig. 10. Step response of the vertex systems.

implemented based on the framework of fuzzy sets
and fuzzy logic. Recall that the operating regions are
partitioned using a set of parallel straight lines (see
figure 4). Thus, 9 corresponding fuzzy sets can be pa-
rameterised by the vector component of the operating
point along the vector orthogonal to those lines. For
simplicity in implementation, the triangular member-
ship functions are used and arranged by Ruspini-type
partition keeping the sum of the membership degrees
equal to 1 as shown in figure 11.
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4.2 Takagi-Sugeno Fuzzy Interpolation

Following the design used in section 3.3, the optimal
controllers are obtained for each 9 operating regions.
In this paper, direct linear interpolation of zeros, poles
and gains is implemented. This is feasible as the
migration of poles and zeros (of the same weight
vector) from one to the next is clearly recognisable
in this case. Note also that the interpolationg of zeros,
poles and gains usually provides smoother and more
robust control than the interpolation of polynomial
coefficients in rational transfer functions (Murray-
Smith and Johansen, 1997).

In this case, the fuzzy inference rule can be repre-
sented as a zero-order TS fuzzy model of the form

Ri : If xi is Ai thenKr = Kri
,Kp = Kpi

, etc . . . ,(16)

where Ri denotes the ith rule, i = 1, . . . , 6, x is
the vector of operating conditions, and A is the fuzzy
set described in section 4.1. Based on product-sum-
gravity at a given input, the final outputs of the fuzzy
model are given by

Kr =

∑6
i=1 μi(x)Kri∑6

i=1 μi(x)
, (17)

where the weight, 0 ≤ μi(x) ≤ 1, represents the
degree of membership defined in figure 11. Kp, z1,
etc... are similar.

Employing the non-linear 2 DOF model described
in section 1.1, the time responses of the TS fuzzy
interpolated controller is shown in figure 12. The
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Fig. 12. Lateral acceleration sequence step response of
the perturbation vertex systems.

simulation results show that the resulting controller is
a robust tracking gain-scheduling controller for at least
all the perturbation vertices.

5. CONCLUSION

This paper presents the design procedure for the lat-
eral acceleration missile autopilot using the multi-
objective evolutionary optimisation method. A de-
composition of the operating envelope based on the

dominated parameters is used in which the resulting
number of partitions becomes transparent.

The closed-loop performance specifications are trans-
formed into the frequency domain requirements which
can conveniently be interpreted graphically. The de-
sign is then reduced to an optimisation problem which
can straightforwardly be solved usting the evolution
strategy based on the proposed cost and constraint
formulations. The Pareto-optimal solutions of the LTI
controller are determined corresponding to the given
target vectors. It is shown that the selected controller
is locally a robust controller for all possible perturba-
tions.

The smooth deterministic transition between the op-
erating regimes is implemented using the zero-order
TS fuzzy model, where the controller’s zeros, poles
and gains are the fuzzy consequent. The non-linear
simulation results show that the interpolated controller
is a robust tracking controller for at least all the per-
turbation vertices.
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