
SIMULTANEOUS DETECTION AND PARAMETER ESTIMATION OF MULTIPLE LINEAR 
CHIRPS 

Jasdeep S Dhanoa, Evan J Hughes and Richard F Ormondroyd 

Department of Aerospace Power and Sensors 
Cranfield University, RMCS 

Shrivenham, SN6 8LA, United Kingdom 

ABSTRACT 

This paper describes a new method for the simultaneous detec- 
tion and parametric estimation of multiple chirped waveforms us- 
ing a method based on evolutionary algorithms. Unlike traditional 
time-frequency analyzers, which provide a distribution of the sig- 
nal specl” over a period of time but do not inherently provide 
chirp parameters, this new method detects and provides as an out- 
put the start and stop frequencies of each chirp, its starting phase 
and amplitude. The new method is capable of detecting and char- 
acterizing multiple chirps which may be overlapping (in time and 
frequency) and in the presence of significant noise. 

1. INTRODUCTION 

Parametric estimation of chirped waveforms is of immense impor- 
tance in the field of signal pronssing. This has use in applications 
such as speech analysis, radar, communication over time-varying 
multipath channels and in the detection and classification of sig- 
nals. Consequently this is an area which has received considerable 
attention. Historically, despite the obvious limitation of window- 
ing, the short-time spectral analysis using the Fourier transform 
and its variants has been the primary method for time-frequency 
analysis of signals. More recently, there have been studies into 
altemative methods derived from the Wigner distribution devel- 
oped for the study of statistical quantum mechanics [l]. However, 
these distributions only obtain a time-frequency plot of the signal 
and, in themselves, to do not characterize the signal parameters 
directly. In order to parameterize the time-frequency distribution, 
other methods such as the Hough or Radon transforms must be 
used in conjunction with the time-frequency distribution to extract 
the main parameters of the chirp, such as the start frequency and 
the chirp rate [21[3]. A major drawback of the basic Wigner distri- 
bution in the presence of multiple chirps is the generation of cross 
component spectral lines which are not actually present in the sig- 
nal. These spurious artifacts in the time-frequency distribution can 
lead to errors in the parameter estimation using these transforms 
and it is certainly possible for weaker signals to he masked. 

In order to overcome these drawbacks, other variants of the 
Wigner distribution have been developed, such as that developed 
by Cho-Williams [I], which perform well in the presence ofmulti- 
ple chirps. In addition, broadening of the main peak in these time- 
frequency distributions due to the inherent tradeoff between time 
and frequency resolution limits the accuracy with which the chirp 
parameters can he estimated using the Hough or Radon transforms. 
Sun et a1 121 state that one way to reduce the minimum detectable 
frequency slope of the chirped signal would be to use a higher or- 

der F E .  However, with a finite set of data and a fixed sampling 
rate, this would reduce the time resolution. 

This paper introduces a new technique for direct detection and 
parametric classification of multiple overlapping chirps within a 
window of observation. The detection and parametric estimation 
of multiple chirps in the received signal is based on matching the 
spectrum of the received set of chirps with the spectrum of a sig- 
nal that has been reconstructed from a set of chirps that have been 
generated using the estimated parameters. The estimation method 
described in this paper is not limited by the effects of peak broad- 
ening and cross-spectral components and it can provide accuracies 
comparable to methods such as MUSIC that are used to detect pure 
sinusoids, but without the need for a high order m. The optimira- 
tion of the estimated chirp parameters is done iteratively in a non 
linear process using the evolutionary algorithm. 

2. EVOLUTIONARY ALGORITHMS 

Evolutionary Algorithms are optimization procedures that operate 
over a number of cycles (generations) and are designed to mimic 
the natural selection process through evolution and survival of the 
fittest 141. A population of M independent individuals is main- 
tained by the algorithm, each individual representing a potential 
solution to the problem. Each individual has one chmmosome. 
This is the genetic description of the solution and may he broken 
into n sections called genes. Each gene represents a single paran- 
eter in the problem, therefore a problem that has eight unknowns, 
for example, would require a chromosome with eight genes to de- 
scribe it. 

The three simple operations found in nature, natural selection, 
mating and mutation are used to generate new chromosomes and 
therefore new potential solutions. Each chromosome is evaluated 
at every generation using an objectivrfirnction that is able to distin- 
guish good solutions from bad ones and score their performance. 
With each new generation, some of the old individuals are removed 
to make room far the new improved offspring. Despite being very 
simple to code, requiring no directional or derivative information 
from the objective function and being capable of handling large 
number of parameters simultaneously, evolutionary algorithms can 
achieve excellent results. 

While there are various optimization techniques available within 
Evolutionary Algorithms, we have found Differential Evolution 
(DE) [ 5 ]  to he most suitable for this application. 
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2.1. Differential Evolution 

Differential Evolution is an evolutionary technique that uses muta- 
tions that are related to the current spatial distribution of the pop- 
ulation. The algorithm generates new chromosomes by adding the 
weighted difference between two chromosomes to a third chromo- 
some. At each generation, for each member of the parent pop- 
ulation, a new chromosome is generated. Elements of this new 
chromosome are then crossed with the parent chromosome to gen- 
erate the child chromosome. The child chromosome is evaluated 
and if it has a better objective value than the parent, the child chro- 
mosome replaces the parent. In this way, no separate probability 
distribution has to he used for mutation which makes the scheme 
completely self-organizing. 

The trial chromosome may be described as in (1). 

2.3. Objective function 

The fitness of a particular chromosome in the population is based 
on: (a) regenerating the multiple chirped signal from the genes, (b) 
obtaining the spectrum of this signal (via the FIT) and (c) compar- 
ing this spectrum with the spectrum of the actual signal from which 
the chirps need to be detected and characterized. The chromosome 
giving the least mean square error is chosen as the best match. For 
the purpose of obtaining this error, the entire spectrum of interest 
is being matched. Thus, the objective function is not only based 
on matching just the peaks, but the position of the nulls and the 
peaks are equally imponant in achieving the best possible match. 
To make the nulls and low sidelobes equally significant, both the 
generated and received spectrums are square rooted to reduce the 
magnitude of the peaks as compared to the sidelobes. 

Where chromosomes a. 4 & Fc are chosen from the population 
without replacement and F is a scaling factor. 

The crossover process is controlled by a crossover parameter 
C. The crossover region begins at a randomly chosen parame- 
ter in the chromosome and then a segment of length L genes is 
copied from to the parent chromosome to create the child chro- 
mosome. If the segment is longer than the remaining length of 
the chromosome, the segment is wrapped to the beginning of the 
chromosome. The length L i s  chosen probabilistically and is given 

(2) 
In general, the scaling parameter F and the crossover parame- 

ter C lie in the range [0.5: 11. Within the population, each individ- 
ual chromosome represents a possible solution to the estimation 
and the gene values within the chromosome are the chilp parame- 
ters themselves. 

2.2. Chromosome Structure 

For the purpose of chirp detection, each possible chirp is character- 
ized by parameters represented by a starting frequency, its phase 
and the chirp rate. These correspond to a set of three genes for 
each chirp. A number of such sets of genes comprise a chromo- 

by (2). 
P ( L  2 v )  = ( c ) " - ' , v  > 0 
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Fig. 1. Simplified block diagram of a chromosome structure 

some. where the number of genes in the chromosome is related to 
the number of chirps required to he detected (i.e. the order of the 
model). This is shown in Fig. 1. Thus for the detection of a single 
chirp, each chromosome would consist of just three genes repre- 
senting stan frequency, starting phase and the chirp rate, whereas 
for the simultaneous detection of three chirped signals, the number 
of genes in each chromosome would increase to nine. 

The objective function is used to quantify the best match from 
within the population of chromosomes on the basis of mean square 
error. 

3. ALGORITHM STRUCTURE F O R  PARAMETRIC 
ESTIMATION OF MULTIPLE CHIRPS 

Generatc a new population 

Differential Evolution 

Generate time-averaged specmm 

parameters in each chromosome 
1 ofchromosomes based on l....~ for estimated chirps as per ,- 

Son population on the basis 

error ascenatn mean square error 

Compare this specmm with the 

Fig. 2.  Schematic block diagram of the algorithm for chirp detec- 
tion and parameter estimation 

Figure 2 shows the schematic representation of the algorithm 
for chirp detection and parameter estimation using Differential Evo. 
lution. The DE algorithm begins by generating an initial popula- 
tion of 350 chromosomes at random with F = 0.9, C = 0.9, 
and the algorithm is run to convergence, which is generally less 
than 100 generations. For each generation, the DE evaluates each 
chromosome to find the best fit using a least mean square error 
approach. This is done by regenerating the multiple chirped sig- 
nal using the parameters for each chirp stored in the chromosome. 
A least squues amplitude fit is then performed on both the real 
and imaginary components of the spectrum of the regenerated sig- 
ndl with the received signal. This amplitude-scaled spectrum is 
then compared with the time-averaged spectrum of the input sig- 
nal. The chromosome giving the least mean square error is selected 
as the best fit and the others are arranged on the basis of ascending 
mean square error. 

Since the algorithm uses a least squares fit  for the amplitude 
estimate for each chirp, it can be tasked to find a larger number 
of chirps than are actually present and the algorithm will null out 
non-existent chirp estimates. Thus this method does not rely on 
prior knowledge of the correct order of the model (i.e. the number 
of chirps present) unlike some other spectral estimators. 

4. RESULTS 

In order to assess the performance of this method of chirp de- 
tection and parameter estimation, we have used linear chirps of 
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constant amplitude and a time duration of 0.9 seconds, which is 
also the window of observation. The chirped frequencies lie in the 
range 250Hz to 310Hz. The results shown here have been used to 
highlight the performance of this method under conditions when 
multiple chirps a x  present and where the chirps cause a time- 
frequency distribution, such as the Wigner distribution, to mask 
weaker chirps within the crossed spectral components. 

4.1. Multiple chirp detection and parameter estimation 

4.1.1. Case I: Multiple identifable chirps 

Table 1 shows the chirp parameters used for this test. The Wigner 
distribution showing the time-frequency spectrum of the three chirps 
is shown in Fig. 3. 

Table 1. CHIRP PARAMETERS FOR CASE I 

Number of chirped signals 3 

Time duration for each chirp 0.9 s 
SNR lOdB 
Chirp frequency range 259.92 Hz to 264.60 Hz 

Normalized Amplitudes 1.1.1 

264.79 HZ to 278.73 H~ 
273.28 Hz to 306.20 Hz 

The grey scale on the right of the graph indicates the mag- 
nitude of the distribution and it is clear that for this example the 
Wigner distribution indicates the presence of the three chirp sig- 
nals but is not able to automatically parameterize them. The new 
algorithm, however, estimated the start and stop frequencies of the 
three chirps as: 259.81 Hz to 264.58 Hz, 264.82 Hz to 278.71 HZ 
and 213.42 Hz to 306.12 Hz respectively and the normalized am- 
plitudes were estimated as 1.00, 1.00 and 0.97. 

Fig. 3. A section of the Wigner distribution showing the three 
chirps 

Figure 4 shows the estimated chirp frequencies (shown as thick 
solid lines) superimposed on the time-frequency distribution of 
Fig 3. The chirp frequencies estimated by the new method have 
a mean absolute error of about 0.05 Hr. Under similar conditions, 
if the Hough or Radon transforms had been used in conjunction 

Fig. 4. A section of the Wigner distribution of the actual chirps 
with the detected chirps superimposed as dotted lines 

with the Wigner distribution to detect the chirps, the estimate of 
the slope of the line would have to be within 0.01 to achieve a 
similar accuracy. However, with short duration signals such as 
this, obtaining such fine angular resolution using the Radon trans- 
form, for example, would result in the peaks splitting, hence laying 
a hound to the accuracy with which the chirp parameters can be es- 
timated. 

4.1.2. Case 11: Detection of multiple chirps in high noise 

While using the same signal parameters as in Tablel ,the noise level 
was raised to give an SNR of OdB. Under these conditions, the new 
algorithm was used to estimate 1000 chirps. Despite thc high noise 
level, the new algorithm had no problem detecting the chirps. For 
this set of results, the absolute mean in the error of the frequency 
estimates of the chirps was within 0.3 Hz. 

4.1.3. Case Ill: Detection of 'masked' chirps 

One of the characteristics of a Wigner distribution is that when 
there are a number of signals present, there are spurious interme- 
diate peaks generated which may mask low amplitude chirps. To 
test the performance of this new algorithm in such a scenario, the 
same c h i p  parameters as in Tablel were used, however, the am- 
plitude of the center chirp was reduced to 0.15. 

Figure 5 shows the Wigner distribution of the chirps. It can be 
seen that the high cross component spectral lines have masked the 
weaker chirp lying between the two dominant ones. If a straight- 
line detection transform, such as the Hough or Radon transform 
had been used to extract the chirp parameters from this distribu- 
tion, only the two dominant chirps would be detected. 

However. the new method is able to resolve 4 the chirps and it 
estimated the start and stop frequencies as: 259.915 Hz to 264.574 
Hz, 263.987 Hr to 278.56 Hz and 273.31 Hz to 306.062 Hz re- 
spectively. The CKOrS for the estimation of the Stan and stop fre- 
quency for this demanding chirp signal are approx 0.22 Hz. The 
normalized amplitudes were estimated as 0.99, 0. I5 I and I .O re- 
spectively. Figure 6 shows the estimated chirps (shown as thick 
solid lines) superimposed on the distribution of Fig 5.  
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Fig. 5 .  A section of the Wigner distribution when chirp amplitudes 
are 1,O.l5,1 respectively 

Fig. 6.  A section of the Wigner distribution when chirp amplitudes 
are 1,0.15,1 with the estimated chirps superimposed 

4.2. Detection of chirps crossing in the time-frequency domain 

The performance of the new method was further validated using 
positive and negative chirped signal that cross in the time-frequency 
domain. Table 2 shows the chirp parameters used for this test. 

The Wigner distribution for this case is shown in Fig. 1. Also 
shown as a thick dashed line superimposed on the Wigner distri- 
bution are the estimated chirps using the new method. The chirp 
frequencies were estimated as: 264.62 Hz to 289.79 Hz, 291.30 
Hz to 213.35 Hz respectively. The mean of absolute CITOIS in the 
frequency estimates is approx 0.06 Hz. 

5. CONCLUSIONS 

The results show that the new method provides high resolution and 
accurate detection and estimation of linear c h i p  The accuracy 
with which it can estimate multiple chirp parameters simultane- 
ously, does not suffer from the limitations imposed on straight- 
line transform methods such as  Hough or Radon due to spectral 
broadening of the main lobe and, it perfoms well even with short 

Table 2. CHIRP PARAMETERS FOR CHIRPS CROSSING IN 
THE TIME-FREQUENCY DOMAIN 

Number of chirped signals 2 

Time duration for each chirp 
Normalized Amplitudes 1.1 

0.9 s 
SNR I O  dB 
Chirped frequency range 264.79 Hz to 289.895 Hz 

29 1.24 Hz to 273.28 Hz 

Fig. 7. A section of the Wigner distribution showing the crossing 
chirps and the detected chirps superimposed 

duration data. Furthermore, it is not susceptible to the problem 
of chirp masking due to spurious spectral components which can 
occur in Wigner based distributions. 
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