
Optimisation Using Population Based Incremental Learning (PBIL)

Evan J Hughes∗

1 Introduction

The Population Based Incremental Learning (PBIL)
algorithm is a simple stochastic optimisation tech-
nique that can be applied quickly to a wide range of
problems. The technique’s main area of application
is for problems that are too multi-modal or discon-
tinuous for gradient or simplex methods, but don’t
warrant a full evolutionary algorithm solution. PBIL
has been shown to outperform conventional deter-
ministic and stochastic optimisation techniques on a
wide range of problems [1, 2] and yet is simple to
code.

This paper describes a practical approach to ap-
plying the PBIL algorithm to optimisation problems.
First the operation of the algorithm is described and
then guidelines for tuning the algorithm are pre-
sented. An example implementation is given and a
method for reducing the processing burden of the al-
gorithm is detailed. An example MATLAB routine
is included to demonstrate the simplicity of the al-
gorithm.

2 Algorithm operation

The PBIL algorithm is a stochastic guided search
process that obtains its directional information from
the previous best solutions. The algorithm was first
described in 1994 [1] and has been improved re-
cently [3]. The PBIL algorithm presented here has
three control parameters; population size (p), learn-
ing rate (l), and search rate (s). Unlike many other
stochastic optimisation algorithms, this algorithm
terminates automatically when the process has con-
verged on a single solution. The problem parame-
ters are represented as a binary chromosome of total
length b bits. Each variable is coded in a binary form
and then concatenated to any previous parameters to
form a single chromosome.

A prototype vector (P) is used to bias the gener-
ation of bits in a population of chromosomes. The
prototype vector has b elements, one for each bit lo-
cation. At each location, the prototype vector holds
the probability that the corresponding bit is a ‘1’.
Each location is initially set to 0.5 which corresponds
to unbiased bit generation. A population of candi-
date solutions is generated using the prototype vec-
tor to bias the generation of bits. For each chro-
mosome in the population, the bits are selected by
generating a uniformly distributed random number
in the range [0,1] for each bit. The chromosome bit

∗Department of Aerospace, Power and Sensors, Royal Mil-

itary College of Science, Cranfield University, Shrivenham,

England. E-mail: e.j.hughes@rmcs.cranfield.ac.uk .

is set to one if the random number is less than the
corresponding prototype vector element, zero other-
wise. All the chromosomes are then evaluated by the
objective function and the best identified.
Equation 1 is then applied to the prototype vec-

tor to incorporate the directional information of the
best chromosome. This equation is a variant of the
process described in [3].

Pn+1 = ((1− l)Pn + l ·CB)(1 − f) +
f

2
(1)

f =
2sl

1− 2s(1− l)

Where CB is the best chromosome and consists of a
pattern of ones and zeros, l is the learning rate, and
s is the search rate.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation, n

P
ro

to
ty

pe
 V

ec
to

r
P

ro
ba

bi
lit

y,
 P

s

t

Figure 1: Typical Prototype vector plot (9 bits in P)

Figure 1 shows the changes in the prototype vec-
tor during a typical optimisation run. The learning
mechanism in equation 1 leads to a change in each
prototype vector element level, that follows an expo-
nential profile.
The search rate, s, is the distance that the final

convergence level is offset by and is shown graphically
on figure 1. The search rate may also be considered
as the probability of selecting a one instead of a zero
element after an infinite number of generations.
If the search rate is set to zero, the elements of the

prototype vector can converge to either 0 or 1. Once
this terminal value has been reached, if the element
has converged in the wrong direction, there is no
way for it to be corrected. Increasing the search rate
prevents the prototype vector elements converging
exactly to 0 or 1. The search rate is analogous to

mutation rate other evolutionary algorithms. The
higher the value of s, the less likely the algorithm
will get stuck in local optima.

The algorithm is allowed to run until all the ele-
ments are within a bound t of the final convergence
level of s or 1−s as appropriate. The bound t is
shown graphically in figure 1. The bound t is de-
fined as shown in equation 2.

t =
(0.5− s)

10
(2)

The termination condition may be summarised as
shown in equation 3.

max(0.5− |P− 0.5|) < s+
(0.5− s)

10
(3)

3 Guidelines for tuning

Three parameters are used to control the algorithm.
The first, learning rate, lies in the range zero to
one and determines the final accuracy of the solu-
tion. The lower the learning rate, the less likely it is
that the algorithm will converge on a local optimum.
With high learning rates, the algorithm will be less
likely to do a comprehensive search of the optimisa-
tion surface. Baluja [1, Page 17] observed that:

If the learning rate is high, the initial populations
generated will largely determine the focus of the
search, without enabling the algorithm to explore the
function space. If the function space does not con-
tain local optima, a high learning rate may work well.
However, if local minima could be a problem, lower
learning rates allow greater exploration.

As l is increased, the number of function evalua-
tions reduces but the probability of premature algo-
rithm convergence increases. An empirical range of
0.1 ≤ l ≤ 0.4 has been found satisfactory for most
problems. The higher learning rates are better for
problems with few local optima.

The second, and most important parameter, is
population size. Population size determines the
probability that the algorithm will find the global op-
timum. Increasing the population size will increase
the chance of finding the global optimum solution,
though it will also increase the number of function
evaluations required.

Small populations yield rapid but crude results,
large populations will give more accurate results but
at a processing cost. The PBIL algorithm will op-
erate with population sizes as low as two, but the
probability of finding the global solution over local
optima is low.

The third parameter is search rate. We may oper-
ate the algorithm by choosing a population size and
then calculating the maximum value of s that min-
imises the number of function evaluations. Equa-

tion 4 gives an empirical approximation to the opti-
mum value of s.

sopt ≈ 1− (2/
√
p)1/b (4)

A population size of 5 with an approximate op-
timum value for s (0 < s < 0.5) is often a good
starting point for tuning the algorithm. It is wise to
start with low population sizes to assess how many
function evaluations are required and then increase
p to achieve sufficiently accurate results.

If a number of optimisation runs are performed,
the rate of occurrence of the best solutions can be
monitored. If the probability of finding a good solu-
tion is low, the population size should be increased.
This will improve the probability of finding the global
solution too. The repeatability of the solutions can
be traded against execution time in this manner.

It must be noted that for the PBIL algorithm to
converge on a final solution, each gene should in-
fluence the objective function. If inverting a gene
value has no effect, the associated prototype vector
element will drift randomly around the 0.5 average
value. It has been demonstrated that given the con-
dition of every gene having influence, the algorithm
will eventually converge on a solution [4].

4 Example implementation

Section 7 shows the MATLAB source code for a prob-
lem where the function being optimised is the sum of
the bits in the chromosome. This function is discon-
tinuous in nature. The whole programme consists
of about 20 lines without the comments. A learning
rate of l = 0.1 was chosen for convenience.

The following table shows the steps taken to tune
the algorithm (averaged over 100 runs). At each step,
a new value of s was calculated. The trials have

p Gens. Calcs. Phit σGens ENES
5 167 835 3% 21 2783

10 132 1320 57% 14 2316
15 117 1755 83% 13 2115
20 106 2120 93% 10 2280
25 100 2500 98% 9 2551

shown that with a population of 20 in the example,
the correct answer can be obtained about 93% of the
time and should take approximately 106 generations
to complete. The Expected Number of Evaluations
to Success is on average 2280 objective calculations.
The population size was chosen to give better than
90% chance of finding the best value.

Increasing either the learning rate or calculated
search rate slightly may reduce the number of func-
tion evaluations needed, but the variability of the
run lengths will increase.

5 Reduction of processing overhead

By their very design, evolutionary algorithms can be
inefficient with objective function calculations. In
the first few generations of the algorithm, all of the
chromosomes evaluated are likely to be different. As
the population of chromosomes converge toward a
solution, a small set of chromosomes may be evalu-
ated repeatedly. If the objective function has heavy
processing requirements, much processor time can
be wasted. A binary search tree described in [5,
Pages 543–563] may be used to reduce the number of
wasted calculations. The following approach may be
applied to most evolutionary algorithm techniques.
The tree is used to store chromosome patterns and

their corresponding objective values. The tree is gen-
erated by inserting each new chromosome as its ob-
jective value is required by the evolutionary algo-
rithm. Chromosomes are added to the tree only if
they are not already present. The new chromosome
is compared to the first chromosome in the tree. If
the new chromosome is smaller, the left branch of the
tree is investigated. If it is greater, the right branch
is chosen.
The tree is descended in a recursive fashion until

either a matching chromosome is found or a chro-
mosome with no sub-tree to follow is encountered.
If a match is found, the previously recorded objec-
tive value is returned to the evolutionary algorithm.
If no match is found before the tree ends, an ob-
jective value is calculated for the chromosome. The
objective is then inserted into the tree along with
the chromosome. If the same chromosome is gener-
ated by the evolutionary algorithm again, it can be
retrieved quickly from the tree.
The tree structure is suited to both binary and in-

teger chromosomes. Real valued chromosomes are
difficult to store effectively as a tiny deviation in
one gene is enough to prevent the chromosome be-
ing matched. If the objective is quick to calculate, it
may be better not to use the tree. If the objective
is computationally expensive or requires heavy disk
usage, in a typical evolutionary algorithm, one quar-
ter of the objective values may be returned from the
tree.

6 Conclusions

In most cases, only the population size and search
rate need to be adjusted to trade repeatability
against number of function evaluations. The sim-
plicity of the algorithm allows it to be applied to
new problems rapidly and can give excellent results
with little or no tuning.

7 MATLAB example

% Population Based Incremental Learning

% E.J.Hughes 14/11/97

%% user control parameters

maxgen=3000; % maximum no. of gens.

b=101; % no. of bits in chrom.

l=0.1; % learning rate

p=20; % population size

%% set other control parameters

s=1-(2/sqrt(p))^(1/b); % search rate

f=2*s*l/(1-2*s*(1-l)); % f

%% initialise

pv=0.5*ones(1,b);

pvx=zeros(maxgen,b);

%% main loop

for n=1:maxgen

%% generate population

chrom=rand(p,b)<(ones(p,1)*pv);

%% put objective here

obj=sum(chrom’)’; % calc. sum of bits

[a,i]=max(obj); % i = best chrom.

%% update proto. vec. and stop if converged

pv=((1-l)*pv+l*chrom(i,:))*(1-f)+f/2;

pvx(n,:)=pv;

if max(0.5-abs(pv-0.5))<(s+(0.5-s)/10)

break; end

end

%% output results

[(pv>0.5) a]

plot(1:n,pvx(1:n,:)); % plot proto. vec.

References

[1] S. Baluja. Population-based incremental learn-
ing: A method for integrating genetic search
based function optimization and competitive
learning. Technical Report CMU-CS-95-163,
School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA, 1994.

[2] Ignatious Thithi. Control system parameter iden-
tification using the population based incremental
learning (PBIL). In IEE Conference Publication
No. 427, UKACC International Conference on
Control (CONTROL ’96), pages 1309–1314, Lon-
don, 2–5 September 1996.

[3] J. R. Greene. A role for simple, robust ‘black-
box’ optimisers in the evolution of engineering
systems and artifacts. In Genetic Algorithms in
Engineering Systems: Innovations and Applica-
tions. (GALESIA ’97), pages 427–432, Glasgow,
2–4 September 1997. IEE Conference Publication
No. 446.

[4] Markus Höhfeld and Günter Rudolph. Towards
a theory of population-based incremental learn-
ing. In 1997 IEEE International Conference on
Evolutionary Computation, Ch. 127, pages 1–5,
Indianapolis, 13–16 April 1997. IEEE.

[5] Mark Allen Weiss. Algorithms, data structures,
and problem solving with C++. Addison–Wesley
Publishing Company, Inc., 1996.

