
 

 

ABSTRACT 

 

In this paper, a new and novel method for optimisation of 

subarray partitioning is presented that is inspired from a 

biological process. The process is optimised using a 

recent multi-objective genetic algorithm (MOGA) and 

demonstrated on a 15 x 15 element conformal array 

antenna. In installed arrays, element gain patterns are 

affected by mutual coupling and manufacturing tolerances 

and this optimisation technique takes these changes into 

account in order to optimise installed performance. Six 

objectives are used in the MOGA to optimise desired 

characteristics in the radiation pattern.  

 

INTRODUCTION 

 

Conformal array antennas are becoming increasingly 

important in the designs of future radar and 

communication systems, but do not enjoy the same 

coverage in the literature as planar array antennas.  

 

The synthesis of conformal arrays is more complex than 

with planar arrays as the elements can all face in different 

directions. Therefore knowledge of the 'embedded' or 

'active' element patterns must be considered when 

optimising operation and control variables. This is 

especially true in smaller arrays where the mutual 

coupling between elements is usually more significant. 

The mutual coupling coefficients can be estimated using a 

method of moments analysis, but it is better to use real 

measured patterns that can be stored and used in the 

optimisation process to improve accuracy of the results. 

 

Once knowledge of the embedded patterns are known (or 

have been estimated), the complex excitations needed to 

steer the beam and reduce sidelobes can be optimised in 

order to give good installed performance. This is 

especially important in conformal arrays that generally 

exhibit higher sidelobes than planar arrays.  

 

With a priori knowledge of the embedded patterns that 

include the affects of any EM coupling and radome 

distortion, it is possible to include them in an optimisation 

algorithm to improve the installed performance of an 

array. The problem is complex, with many hundreds of 

input variables (or thousands in large arrays) and multiple 

conflicting antenna performance objectives. The number 

of possible excitation sets is huge. One way to reduce the 

massive search space of possible excitation sets, is to 

partition the array into subarrays and apply a common 

excitation at the subarray level rather than at the element 

level. This raises the question of the best subarray 

partitions to use and the optimal excitation set to apply. 

 

Genetic algorithms (GAs) are particularly well suited to 

complex problems of this type. This paper describes the 

application of Zitler's Strength Pareto Evolutionary 

Algorithm II  (SPEA2) (1) to the optimisation of the 

complex excitations for a 225 element conformal array 

antenna (Fig. 1).  A new and novel method for optimising 

the partitioning of conformal arrays into subarrays is also 

presented. The subarray partitioning is optimised 

simultaneously with the array excitations using SPEA2. 

 

THE OPTIMISATION PROBLEM 

 

In a standard or simple genetic algorithm (SGA), 

‘populations’ of ‘individuals’ (solutions) are evolved in 

parallel over a number of ‘generations’ (iterations). An 

SGA samples the search space stochastically and is far 

less likely to converge on non-global optima than many of 

the classical optimisation techniques. 

 

The SGA is generic and relies on a distinct ‘fitness 

function’ to calculate a measure of success for an 

individual during the optimisation process. In antenna 

optimisation, the fitness function may be monitoring 

sidelobe levels, beamwidth or gain. The fitness function is 

usually the most computationally expensive part of the 

algorithm as it involves synthesis and analysis of the 

antenna pattern. This is especially true when optimising 

large arrays. 

 

When multiple objectives are to be optimised 

simultaneously, there is often more than one optimal 

answer.  Solutions may be found that are good on one 

objective, but bad on another, forcing the designer to trade 

one objective for another.  The set of optimal solutions is 

often called a trade-off surface, or more correctly, a 

Pareto optimal set. 

 

SGA's converge to a point on the Pareto set and so 

provide a single optimised solution to a problem. This 

presents the system designer with little or no information 

on the shape of the Pareto trade-off surface unless 

multiple runs are of the optimiser are performed and the 

results are diverse (which is not usually the case).  
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When multiple objectives are evident in a problem, they 

must be combined in some way in a SGA in order to form 

a single objective. This is usually achieved by forming a 

(weighted) sum of objectives. When maximising a 

function, summing objectives can cause a SGA to oscillate 

around two or more maxima on the cost surface and leave 

concave regions of the Pareto set undisclosed. 

 

Multi-objective Genetic Algorithms (MOGAs) however, 

carry only a marginal increase in processor overhead 

compared with SGA's and evolve a set of solutions to 

describe a diverse Pareto optimal set in objective space. In 

the case of antenna optimisation, the optimised trade-off 

surface delivered by the MOGA presents the designer 

with a choice of optimised operating points for the system. 

In theory, unlike a weighted SGA, all points on the 

surface described by the Pareto set could be found with a 

MOGA.  

 

Antenna array excitation optimisation problems have very 

large search spaces due to the high numbers of elements 

and degrees (bits) of amplitude and phase control 

available. The use of subarrays reduces the number of the 

excitation values needed as a single excitation can be 

applied at the subarray rather than element level.  

 

The method described below for finding optimal subarray 

partitions and excitation sets for good antenna array 

performance is one of effective genotypic representation 

in the evolutionary algorithm. 

 

In a real array, in order to optimise beampattern 

performance to the highest possible degree, the subarray 

partitioning and excitations must be optimised 

simultaneously, taking into account the actual embedded 

gain patterns for each element. The method for 

performing this optimisation is described below and 

demonstrated on a conformal array antenna (Fig. 1). 

 

LITERATURE 

 

There are relatively few papers published concerning 

optimisation of subarrays using GA or EA techniques. 

Wang et al (2), proposed a GA method for the 

optimisation of seismic array subarray configuration. In 

their paper, the SNR performance of a 20 element array 

with inter-element spacing of 2.5km was optimised using 

a SGA. The algorithm formed simple subarrays by 

switching off certain elements in the array.  

 

Haupt applied a GA to pre-defined subarrays and found 

optimum excitation tapers to apply to the subarrays with 

encouraging results (3).  More recently, López et al (4)  

optimised linear array partitions and weights using a SGA.  

 
 
Figure 1. Conformal Array Geometry. This is the testcase 225 

(15 x 15) element array under optimisation. The lines projecting 

from the rear of the elements illustrate the pointing angle of 

each element. Array element spacing is 0.5λ in a 7 GHz system. 

 

SUBARRAY PARTITIONING METHOD 

 

The method presented in this work for partitioning the 

antenna array into subarrays was inspired by the 

biological process of cell division. Single celled 

organisms such as amoebas, divide into two new cells by a 

process known as binary fission. The cells have to grow 

before they can divide, and so the speed with which they 

grow, to some extent determines their division rate. If we 

place together N live cells (each with a different growth 

rate) and observe their numbers over time, the two-

dimensional area occupied by each cell type will grow and 

form a 'footprint' below each cell type. This footprint will 

be unique in shape and area. The shape of the footprint is 

determined by the initial starting location of each 'seed' 

cell, the growth rate (cell division) rate for each cell and 

the initial position of each new cell formed. It is this 

biological process that has been modelled to represent the 

division of array elements into subarrays. 

 

To demonstrate this method, consider a simple 9 x 9 

element planar array. We initially form a 9 x 9 grid which 

represents the possible element locations in the array. The 

first step is to temporarily divide this grid into the 

required number of subarray partitions.  

 

We then choose nine divisions and randomly place four 

seed ‘cells’ in each of the partitions (Fig. 2). The number 

of cells need not be fixed at four and can be varied by the 

user or by the optimisation process. The partitions are 

then discarded. 
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Figure 2.  Initial subarray seeds. 

 

We then randomly create an array of growth rate variables 

Rcell, where 10  cellR . A final array Pcell is created 

in memory that acts as the trigger for cell reproduction. 

Initially P is set to zero and each value in P refers to the 

corresponding element located on the grid. 

 

The pseudo code to describe this process is given by: 

 
While array is not full: 

 T = T + 1 

 For all existing cells  

  Pcell = Pcell + Rcell 

  If Pcell > 1 

Form new cell of same type, placing 

new cell at nearest available 

orthogonal grid position. 

  End If 

End For 

End While 

 

Each loop of the code represents one time period, T,  

during which the existing cells have time to ‘grow’. Once 

they have reached a trigger size (as stored in Pcell) they 

divide. Each new cell formed occupies the first available 

grid position in a north, west, east and then south order. 

 

Although the grid is planar, the grid positions can easily 

represent conformal array element locations and so is 

suitable for both classes of antenna.  

 

MULTI-OBJECTIVE SUBARRAY AND 

RADIATION PATTERN OPTIMISATION 

 

To generate an entire array excitation set for the 15 x 15  

array, including the 15 subarray partitions, 270 variables 

need to be optimised by the MOGA. This are broken 

down as: 

 15 x amplitude variables, 

 15 x initial seed location variables,  

 225 (15 x 15) x growth-rate variables. 

 

In order to apply the MOGA, we have to represent a 

solution to our problem using a genotypic representation  

of the variables (a chromosome encoding scheme).  

The genotypic encoding schemes used to represent the 

above variables had to be resistant to the genetic operators 

of crossover and mutation; that means they must produce 

valid chromosomes after these operations have occurred. 

 

Three real-valued chromosomes were used to represent a 

solution. The first ch1, was used to represent the 

amplitude values. The second ch2 encoded the initial seed 

locations and finally ch3 contained the growth-rate 

variables. 

 

GENERATION OF UNIQUE ELEMENT GAIN 

PATTERNS 

 

For this theoretical study, unique randomised element gain 

patterns were generated and stored in a look-up table for 

use in the optimisation process. The gain patterns were 

generated by starting with a theoretical cosine pattern and 

then distorting at different angles by randomly attenuating 

the gain. The randomised plots were then 'smoothed' by 

calculating a polynomial approximation to each one. The 

polynomial approximation curve served as the unique gain 

patterns. When optimising the installed performance of a 

real system, the gain patterns would first have to be 

measured or estimated for use in the optimisation process. 

 

CONFORMAL ARRAY SYNTHESIS 

 

In order to determine the success of a solution (defined by 

one set of chromosomes), it is necessary to model the far 

field pattern of the antenna. The far field radiation pattern 

of the conformal array was calculated using: 
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( Eq. 1) 

The steering phase required to steer the beam to 

oo  , was calculated using: 
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(Eq. 2) 

The multiple objectives used in the MOGA were chosen 

to characterise important defining features of the radiation 

pattern. The first fitness measure f1, measured mainlobe 

gain and was encoded for maximisation, while f2 

measured the maximum sidelobe level (minimisation). 

The third, f3, measured the maximum sidelobe level 

within ±40° of the mainlobe (minimisation). Both the 

azimuth and elevation beamwidths were measured and 

stored as f4 and f5 (both minimisation), with the 

magnitude of the difference between them being stored as 

another objective f6 (minimisation) - this encouraged 

solutions to form with equal az. and el. beamwidths.  

 

SPEA2 was chosen for this task as it is not limited by the 

number of objectives or input variables and in trials on 



 

 

this problem, has outperformed other recent MOGAs. A 

full explanation of SPEA2 is beyond the scope of this 

paper but in essence, SPEA2 uses the standard genetic 

algorithm operators of crossover and mutation to 'evolve' 

the input variables but maintains a fixed-size external 

archive of non-dominated solutions. It also includes 

measures to ensure the diversity in the non-dominated 

solutions found and maintained in the archive. 

 

RESULTS 

 

Several runs of SPEA2 were completed using 100 

generations using the fitness measures defined above, 

population sizes of 100 individuals and a fixed external 

archive size of 35. Probability of crossover was 80 % and 

mutation 1 %. A single seed cell was used initially to grow 

each subarray. Once the maximum number of generations 

had been reached, the archive contained the best multi-

objective solutions found during the run. 

 
Figure 3. Azimuth cuts of optimised (solid line) solution and a 

full power uniformly excited array (dashed line). Plot is 

normalised to 43.99dB (EIRP). 

 

Figures 3 and 4 show the az. and el. cuts of the radiation 

patterns of one such optimised solution contained in the 

archive set. Figure 5 shows the subarray partitions. 

Although the EIRP has dropped due to the tapering 

applied, the sidelobes have all been reduced in magnitude 

relative to the mainlobe, the az. and el. beamwidths are 

almost equal and the average sidelobe level is much lower 

than in full power transmission. With the exception of the 

far-out sidelobes, the sidelobe levels are relatively 

constant in the azimuth cut and low for an array of this 

size (15 x 15). 

 

CONCLUSION 

 

This work has demonstrated that state-of-the art multi-

objective evolutionary algorithms can give good results 

when presented with difficult conformal antenna 

optimisation problems. In addition, a new and novel 

method for incorporating the subarray partitioning into the 

optimisation process has also been presented suitable for 

both planar and conformal antennas. 
 

 
Figure 4. Elevation cuts 

 
Figure 5. Optimised Subarray partitions 
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