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ABSTRACT
This paper describes a new parametric method of spectral
analysis of complex signals which may contain multiple,
overlapping, non-linear and linear chirps. The method pa-
rameterizes the time variation of the chirp frequencies and
also provides an estimate of the phase and relative ampli-
tudes of each chirp. The method exploits time windowing
of the received signal and uses an Evolutionary Algorithm to
optimize the estimated parameters, The new method works
well in high levels of noise corresponding to SNRs of -7dB.

1. INTRODUCTION

Spectrum analysis of complex signals and parametric esti-
mation of their component waveforms is immensely impor-
tant in applications such as the detection and classification
of signals, speech analysis and communication over time-
varying multipath channels. Many complex signals com-
prise of a combination of non-linear frequency chirps, linear
frequency chirps and pure sinusoids. Historically, despite
the obvious limitation of windowing, the short-time spec-
tral analysis using the Fourier transform and its variants has
been the primary method for time-frequency analysis of sig-
nals. More recently, there have been studies into alternative
methods derived from the Wigner distribution [1]. However,
these distributions only obtain a time-frequency plot of the
signal and, in themselves, do not parameterize the signal
directly.

In order to parameterize the time-frequency distribution,
image-processing methods such as the Hough-Radon trans-
form (HRT) must be used in conjunction with the time-
frequency distribution [2]. If it is known « priori that the
chirps are linear or have a non-linearity that can be described
by relatively few parameters (such as a hyperbolic func-
tion), these methods can be very effective. However, for
non-linear chirps where the degree of non-linearity is not
known or where it is defined by a larger number of param-
eters (such as a general parabolic function), such methods
become very computationally intensive. In addition, broad-
ening of the main peak in these time-frequency distributions
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due to the inherent tradeoff between time and frequency res-
olution limits the accuracy with which the chirp parameters
can be estimated using HRT. Furthermore, these methods do
not directly provide any estimate of the phase or amplitude
of these chirps. which may be of importance in applications
such as interference cancellation.

This paper describes a new method that can be used to
analyze the spectrum of complex signals. It analyzes the en-
tire window of data without performing either a traditional
short-term spectral analysis or obtaining a time-frequency
distribution. The method detects the presence of any non-
linear or linear chirps as well as pure sinusoids and it param-
eterizes their change of frequency with time. The multiple
chirps may overlap in frequency and they may have different
amplitudes. Each chirp is described vsing a non-linear func-
tion of frequency and time, where the variables are the start
and stop frequencies and the coefficient(s) of non-linearity.
In addition to these parameters, the output of the algorithm
includes an estimate of the phase and normalized amplitude
for each chirp. The accuracy in the estimation of the chirp
frequencies is not limited by peak broadening or the pres-
ence of sidelobes due to time windowing.

The method is based on matching the spectrum of a lo-
cally generated chirp signal to the time-windowed spectrum
of the received signal. Possible algorithms that achieve this
include MMSE and ML methods. However, when the sig-
nal of interest is not known « priori, a maximum likelihood
method would require a very large number of templates for
the signal to be checked against. In addition, when the solu-
tion to the problem is multimodal, as here, the key require-
ment is for an effective optimization algorithm that has a
high probability of converging to the global optimum. Con-
sequently, in this paper we propose a method that is based
on Evolutionary Algorithms. These algorithms are partic-
vlarty useful in this problem because they initially have a
very wide search space, but they quickly converge to pock-
ets of potential solutions distributed about the scarch space.
As a result of this initial global search, the Evolutionary Al-
gorithm is far less likely to be trapped in a local minimum.



2. EVOLUTIONARY ALGORITHMS

Evolutionary Algorithms are optimization procedures which
operate over a number of cycles (generations) and are de-
signed to mimic the natural selection process through evo-
lution and survival of the fittest [3]. A population of M in-
dependent individuals is maintained by the algorithm, each

individual representing a potential solution to the problem.

Each individual has one chromosome. This is the genetic de-
scription of the solution and may be broken into n sections
called genes. Each gene represents a single parameter in
the problem. Therefore, a problem that has eight unknowns
would be described by a chromosome with eight genes.

The three simple operations found in nature, natural se-
lection, mating and mutation are used to generate new chro-
mosomes and therefore new potential solutions. Each chro-
mosome is tested at every generation using an objective func-
tion that is able to distinguish good solutions from bad ones
and score their performance. Based on this test, a new pop-
ulation of chromosomes is generated in which the high-
est scoring chromosomes of the previous generation are re-
tained and new ones created using mutation, selection and
crossover. To maintain the population size, the lowest scor-
ing chromosomes are discarded to make room for the new
improved offspring. Evolutionary Algorithms achieve ex-
cellent results, yet are simple to code, require no directional
or derivative information from the objective function and
can handle a large number of parameters simultaneously.

Although there are various optimization techniques avail-
able within Evolutionary Algorithms, we have found that
Differential Evolution (DE) [4] is most suitable for this ap-
plication because initially it carries out a random search of
the entire solution space that is subsequently focussed on a
few potential candidate solutions. This is important given
the multimodal nature of the optimization problem.

2.1. Differential Evolution

Differential Evolution [4] is an evolutionary technique that
uses mutations that are related to the current spatial distribu-
tion of the population. The algorithm generates new chro-
mosomes by adding the weighted difference between two
chromosomes, to a third chromosome. At each generation,
for each member of the parent population, a new chromo-
some is generated. Elements of this new chromosome are
then crossed with the parent chromosome to generate the
child chromosome. The child chromosome is evaluated and
if it has a better objective value than the parent, the child
chromosome replaces the parent. In this way, no separate
probability distribution has to be used for mutation which
makes the scheme completely self-organizing. A feature of
this algorithm is that the populations of the chromosomes
form clusters around the possible solutions so that a num-
ber of possible solutions are investigated simultaneously in
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a bid to ascertain the global optimum solution.

The trial chromosome P; may be described as:

Pt=F(Pa_}5;)+ﬁc (D
where chromosomes 15; 15(, & 130 are chosen from the pop-
ulation without replacement and F is a scaling factor,

The crossover process is controlled by a crossover pa-
rameter C. The crossover region begins at a randomly cho-
sen parameter in the chromosome, and then a segment of
length L genes is copied from P tothe parent chromosome
to create the child chromosome. If the segment is longer
than the remaining length of the chromosome, the segment
is wrapped to the beginning of the chromosome. The length
L is chosen probabilistically and is given by:

P(L2v)=(C)*v>0 @

In general, the scaling parameter F' and the crossover pa-
rameter C lie in the range [0.5,1]. We have found F=0.9
and C=0.9 to be most suitable. Within the population, each
individual chromosome represents a possible solution to the
estimation and the gene values within the chromosome are
the chirp parameters themselves.

2.2. Chromosome Structure

For the purpose of non-linear chirp detection, each possible
chirp is characterized by parameters represented by a start
frequency, a stop frequency, its phase and the coefficient of
non-linearity. These correspond to a set of four genes for
each chirp. A number of such sets of genes would com-
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Figure 1: Conceptual structure of a chromosome

prise a chromosome. Figure 1 shows a conceptual struc-
ture of a chromosome. The number of genes in the chro-
mosome is related to the number of chirps required to be
detected. Thus for detection of a single chirp, each chromo-
some would consist of just four genes, whereas for detec-
tion of three chirps, the number of genes in a chromosome
would increase to twelve. By simply increasing the number
of genes that describe each chirp it would be possible to an-
alyze non-linear chirps whose time-frequency variations are
described by higher order polynomials.

An objective function is used to quantify the best match
from within the population of chromosomes on the basis of
mean square error.



2.3. Objective function

The fitness of a particular chromosome in the population
is based on comparing the FFT obtained by the combined
spectrum of all its chirps with the FFT of the actual sig-
nal from.which the chirps need to be parameterized. The
chromosome giving the least mean square error is chosen
as the best match. For the purpose of obtaining this error,
the entire spectrum of interest is matched. Thus, the objec-
tive function is not only based on matching just the peaks
but the position of nulls and peaks are equally important in
achieving the best possible match.

3. ALGORITHM STRUCTURE FOR PARAMETRIC
ESTIMATION OF MULTIPLE CHIRPS

Generate a new population
of chromosomes based on
Diffcrential Evolution

Gienerate time-averaged spectrum
for cstimated chirps as per
parameiers in cach chromosome

Sort population on the basis
of ascending mean square
crror

Compare this spectrum with the
spectrum of input signal and
ascertain mean square crror

Figure 2: Algorithm for chirp parameter estimation

Figure 2 shows the schematic representation of the al-
gorithm for chirp parameter estimation wsing DE. The DE
algorithm begins by generating an initial population of 350
chromosomes at random with F = 0.9, C = 0.9 and
it is then run for 150 generations. For each generation, the
DE algorithm evaluates each chromosome to find the best
fit using a least mean square error approach. This is done
by generating the spectrum for each chirp from the parame-
ters stored in the chromosome. The spectra of the chirps in
each chromosome are then summed and a least squares am-
plitude fit performed on both the real and imaginary com-
ponents of the spectrum. This amplitude scaled spectrum is
then compared with the time averaged spectrum of the in-
put signal. The chromosome giving the least mean square
error is selected as the best fit and the others are arranged
on the basis of ascending mean square etror. For assessing
the mean square error, both the real and imaginary values of
the spectrum are used to obtain an accurate phase estimate
for each chirp.

The algorithm can be tasked to find a larger number
of chirps than are actvally present. In this case, the least
squares estimate of the amplitude of each chirp will null-
out non-existent chirps. Thus this method does not rely on
prior knowledge of the correct order of the model.
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4. RESULTS

In order to demonstrate the effectiveness of the new method,
an arbitrary multiple-chirped test waveform was generated.
This comprised two non-linear chirps: one swept up in fre-
quency and the other swept down in frequency with a com-
mon frequency at some point in time. The normalized am-
plitudes of the two chirps were 0.8 for the up-chirp and 1.0
for the down chirp. The variation of frequency with time,
fe(2), for the non-linear chirp is described by the following
parabolic equation:

f@)=at’> +bt+ec &)

wherea = fo — fi —s.b=s,¢c= fi,and f; and f> are
the start and stop frequencies respectively and s describes
the non-linear time variation of the chirp. Both the sinusoid
and the linear chirp are special cases of (3) and in contrast,
a hyperbolic chirp function (4) has just two coefficients, a

and b:
t2
fc(t) =b (E’E = 1)

Table | provides the main parameters of the test wave-
form. In the following sets of results, the effect of SNR on
the performance of the algorithm is demonstrated.

C))

Table 1: CHIRP PARAMETERS

Chirp | Chirp 2
Normalized Amplitude 0.8 1.0
Time duration for chirp 0.9s 0.9s
Start frequency, f; 240Hz  260Hz
Stop frequency, f2 285Hz  210Hz
Coefficient of non-linearity, s 15 45

Figure 3 shows the frequency spectrum of a 0.9 second
block of the received signal at an SNR of 10dB evaluated
using a 1024 point FFT. The effect of the two chirps is to
smear out the spectrum, as would be expected. Figure 4
shows a plot of the time variation of the frequency of each
chirp obtained from the new algorithm. The solid line shows
the time frequency plot of the original waveform whereas
the dashed line shows the mean of the estimated time vari-
ation of the two chirps using the new algorithm. It is clear
that the new method is able to track the frequency changes
of the two chirps with great accuracy.

The error bars on this plot have been obtained by per-
forming 50 runs under identical conditions and setting the
length of each error bar to -1 standard deviation of the fre-
quency error about the mean. The mean of the estimated
amplitudes using this method was 0.81 for chirp 1 (cf. an
actual amplitude of 0.8) and 0.98 for chirp 2 (cf. an actual
amplitude of 1.0).
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Figure 3: Spectrum of the received signal at SNR=10dB

Frequency in Hz.

04 os
Tima in seconds.

cs 1

Figure 4: Actual (solid) and estimated (dashed) time-
frequency variation of two non-linear chirps at SNR=10dB

Figure 5 shows the spectrum of a similar signal but at an
extremely poor SNR of -7dB. Again, the spectrum is eval-
uated using a 1024 point FFT. Despite the extremely high
noise level, figure 6 shows that the new algorithm is still
able to differentiate and extract the time-frequency varia-
tions of the two chirps. There is close agreement between
the mean of the estimated time variation of the two chirps
(dashed line) and the original chirp waveforms (solid line),
but the standard deviation is larger. The mean of the esti-
mated amplitudes using this method was 0.75 for chirp 1
and 0.94 for chirp 2.

5. CONCLUSIONS

The results show that the method provides high accuracy
in estimating non-linear chirps in high levels of noise. It
does not suffer from the limitations of peak broadening of
the main spectral lobe due to windowing. Considering the
high number of possible solutions that the multiple non-
linear chirp waveform could have taken, the evolutionary
algorithm has been found to be highly effective in provid-
ing an initial global search that is subsequently focussed on
a few potential candidate solutions.
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Figure 6: Actual (solid) and estimated (dashed) time-
frequency variation of two non-linear chirps at SNR=-7dB

While the results show the performance of this method
in analyzing parabolic non-linear chirps, it is possible to an-
alyze chirps with higher degrees of non-linearity by increas-
ing the number of genes describing each chirp.
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