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Abstract - This paper presents a new method of cancelling 
wideband interference from digital acoustic communication 
signals used in underwater communication systems. The 
interference is from other co-channel acoustic systems, such as 
navigation systems, that have a bandwidth comparable to the 
acoustic communication signal.  The effectiveness of the new 
successive interference cancellation algorithm is largely due to a 
blind interference estimator that uses a multi-objective 
evolutionary algorithm.  
 

I. INTRODUCTION 
 

The frequency spectrum available to support underwater 
acoustic signal transmission is severely limited by noise and 
dispersion, especially in the littoral environment. This means 
that the same spectrum has to be shared by systems as 
diverse as acoustic communication systems and acoustic 
navigational aides such as echo-sounders and SONAR. 
Navigational systems frequently use high power, wideband, 
frequency-modulated signals to achieve long-ranges and high 
range resolution. Further, improvements in computational 
power mean that these systems are increasingly using 
complex waveforms that may change on a pulse-to-pulse 
basis.  

Over a corresponding period of time, considerable 
progress has been made in the development of high data rate 
digital acoustic communication systems that require high 
sensitivity receivers. Consequently, as the numbers of users 
sharing the underwater channel increase, a situation is arising 
where there can be high levels of interference between high 
power navigation systems and high sensitivity commun- 
ication systems (and vice versa). 

The problem of interference in the underwater channel 
has recently been highlighted by Preisig and Johnson [1] 
who proposed the use of new detection techniques that 
perform well in the presence of such interference. However, 
this paper takes a different approach and proposes the use of 
successive interference cancellation, which could either be 
used independently or with the detection schemes proposed 
in [1] to improve the performance of sensitive underwater 
acoustic digital communication systems in the presence of 
co-channel, wideband, interference.    

One of the earliest methods of acoustic interference 
cancellation is to use adaptive beamforming whereby a null 
in the receiving array pattern is placed in the direction of the 
interference [2]. However, many of the platforms requiring 

on-board digital acoustic communication systems are small 
and cannot deploy large arrays for spatial processing. In 
addition, the wideband nature of the interference precludes 
the use of simple filtering as a means of interference 
suppression. 

In a recent paper Chen, Hudson and Yao [3] have also 
highlighted the problem of interference in underwater 
acoustic channels and the unsuitability of conventional 
interference cancellation methods such as cepstrum based 
deconvolution and many methods of interference cancel- 
lation often used for RF communication systems. Further- 
more, since it is assumed that the parameters of the 
interfering signal may change on a pulse-to-pulse basis, 
(either intentionally or due to the rapid time variation of the 
channel characteristics) this precludes the use of conven- 
tional adaptive interference cancellers. In this paper we 
propose a blind interference cancellation technique that is 
suitable for the underwater acoustic communication channel.  

The aim of the paper is two-fold. First, it shows how a 
multi-objective evolutionary algorithm (EA) can be used to 
estimate the waveform of a wideband interfering signal in 
the presence of noise and the wanted signal. The perform- 
ance of the new estimator is demonstrated through its mean 
square error characteristics. Second, it shows how this 
estimate of the interfering signal can be used in a successive 
interference cancellation system and the improvement in the 
performance of a typical underwater acoustic digital 
communication system. Consequently, the novel feature of 
this paper is the interference estimation algorithm rather than 
the method of interference cancellation per se. 
 

II. THE NEW INTERFERENCE CANCELLER 
 
Figure 1 shows a block diagram of the successive inter- 
ference canceller which uses a multi-objective evolutionary 
algorithm in the interference estimation process. In structure, 
it is simpler than a traditional adaptive interference canceller, 
since it is non-adaptive. The new method is effective because 
it is able to accurately estimate the waveform of the 
interfering signal on a pulse-to-pulse basis in the presence of 
other non-Gaussian signals, despite a limited number of 
samples and limited a priori knowledge of the interfering 
signal waveform. The only a priori information required by 
the estimator is that the interfering signal is represented by 
an arbitrary non-linear chirp waveform, which encompasses 
linear chirps and pure sinusoids.  
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Fig.1 Block diagram of the interference canceller 

 
 

It is assumed that the ‘wanted’ signal comprises a 
wideband digital acoustic signal such as an MPSK or QAM 
signal [4]: 
 

( ) ( ) ( )( )ttftAts c θπ += 2cos1                         (1) 
 
where ( )tA1  is the amplitude of the signal (which may be 
time-varying for QAM modulation), ( )tfc  is the acoustic 
carrier frequency and ( )tθ  is the time varying phase 
representing the mapping of the symbols on to the carrier 
phase.  

In contrast, the interfering signal (assumed to be a 
navigation signal) consists of non-linearly frequency- 
modulated pulses:  
 

( ) ( ) di TttfAty ≤≤+= 0for    2sin2 φπ                 (2) 
 
where 2A  is the amplitude of the interfering signal, φ  is 
the initial phase of the interference, dT  is the duration of 
the interfering pulse and ( )tf i  is a non-linearly 
time-varying frequency whose time variation is expressed as 
(for example):  
 

( ) ( ) 2
121 tfftftf i σσ −−++=         (3) 

 
where 1f  and 2f  are the start and stop frequencies 
respectively, σ  is the chirp non-linearity factor and t  is 
the time variable.  The received signal is: 
 

( ) ( ) ( ) ( )tntytstr ++=            (4) 
 
where ( )tn  is additive white Gaussian noise (AWGN). The 
interfering signal, ( )ty , has a wide dynamic range and may 
be stronger than the wanted digital communication signal. In 
addition, the spectra of the two signals overlap significantly. 

As shown in Fig. 1, the received signal is passed to the 
first interference estimator. The estimator matches both the 
time-domain waveform of the received signal and its 
spectrum to a replica signal that represents the interference 
signal based on the assumption that the interference signal is 
a chirped waveform. The estimate of the interfering 
waveform is optimised using a multi-objective EA. The 
estimated interference waveform is then used to partially 
remove the interference on the incoming signal. The 
recovered data is then used in a second stage of interference 
estimation and cancellation to provide improved perform- 
ance, as discussed later.  
 
A.  Interference estimator 
The estimation of the interference signal is based on the use 
of EAs. The authors have previously used EAs to 
parameterise linear and non-linear chirps in AWGN [5][6]. 
However, in this paper, rather than parameterise the 
waveform, we use a multi-objective EA [7] to obtain a 
sampled estimate of the interference waveform in the 
presence of other, non-Gaussian, signals.  

EAs are optimization procedures that operate over a 
number of cycles (generations). A population of M  
independent individuals is maintained by the algorithm, each 
individual representing a potential solution to the problem. 
Each individual has one chromosome. This is the genetic 
description of the solution and may be broken into n  
sections called genes. Each gene represents a single 
parameter of the problem. In this problem, the chromosome 
consists of four genes representing: the start frequency, 1f , 
stop frequency, 2f , the non-linearity factor, σ , and the 
initial phase, φ . However, other parametric descriptions of 
the chirped interference waveforms could have been used.  

The three simple operations found in nature, natural 
selection, mating and mutation are used to generate new 
chromosomes and therefore new potential solutions.  Each 
chromosome is evaluated at every generation using an 
objective function that is able to distinguish good solutions 
from bad ones and score their performance. With each new 
generation, some of the old population who perform poorly 
against the objective function are removed to make room for 
the new offspring if their performance is better. Although 
there are various optimization techniques available within 
evolutionary algorithms, we have found Differential 
Evolution (DE) to be most suitable for this application 
because of its fast convergence. 
 
B.  Differential Evolution 
Differential Evolution is an evolutionary technique that 
generates new chromosomes that are related to the current 
spatial distribution of the population. This is done by adding 
the weighted difference between two chromosomes to a third 
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Fig. 2 Graphs of mean square error of the EA-based estimator 
 
 
chromosome to produce a new chromosome, tP  for each 
member of the population: 
 

( ) cbat PPPFP +−=            (5) 
  
where chromosomes aP , bP  and cP  are chosen from the 
population without replacement and F  is a scaling factor. 
The genes of this new chromosome are then crossed with the 
parent chromosome to generate the child chromosome. The 
crossover process is controlled by a crossover parameter C . 
In general, the scaling parameter, F , and the crossover 
parameter, C , lie in the range [0.5, 1]. The crossover region 
begins at a randomly chosen parameter in the chromosome 
and then a segment of length L  genes is copied from tP  
to the parent chromosome to create the child chromosome. If 
the segment is longer than the remaining length of the 
chromosome, the segment is wrapped to the beginning of the 
chromosome. 

The length L  is chosen probabilistically and is given 
by: 
 

( ) 0for    1 >=≥ − vCvLP v           (6) 
 
The performance of the child chromosome as a possible 
solution is evaluated using the objective function and if it has 
a better objective value than the parent, the child 
chromosome replaces the parent.  
 
C.  Objective function 
The fitness of a particular chromosome is based on: (a) 
regenerating the interference waveform from the genes, (b) 
obtaining its spectrum and (c) comparing the estimated 
waveform and the received signal in both the time and 
frequency domains. The basis for the comparison in both 
domains is the mean square error:  
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Fig. 3  Spectrum of the data and the interference 
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where fE  and tE  are the mean square errors in 
frequency and time respectively, kY  and kX are the kth 
spectral components of the received signal, ky  and the 
regenerated waveform, kx  respectively. M and N  
represents the number of samples taken and the number of 
frequency bins used in the spectral estimate, respectively. 
Often NM = , but this need not always be the case. The 
chromosome giving the least mean square error in either 
domain is chosen as the best match; i.e.:  
 

[ ]tf EEE ,min=               (9) 
 
D.  MSE performance of the interference estimator 
In this section, the performance of the new waveform 
estimator in AWGN is presented. For this case, a non-linear 
frequency modulated pulse waveform was used as the trial 
interference waveform. The parameters for this waveform 
were: amplitude, 12 =A  start frequency, kHz71 =f , stop 
frequency, kHz142 =f  and the chirp non-linearity factor, 

30−=σ . 
Figure 2 shows the mean square error (MSE) between the 

spectrum of this test waveform and the estimated waveform 
under different SNRs. This plot has been obtained as the 
average MSE of 5 runs at each SNR. Curve (i) (dotted line) 
shows the contribution to the MSE due to the noise present 
within the received waveform and curve (ii) shows the MSE 
between the received and the estimated waveform. In an 
ideal estimator, the signal should be matched exactly, with 
the only residual being noise. As can be seen the new 
estimator is very close to the ideal. However, in the presence 
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of other non-Gaussian signals (in this case QPSK modulated 
data representing the digital acoustic communication signal), 
the performance of the EA interference estimator degrades 
due to the cross-correlation between the various signal 
components. This is shown as curve (iii) in Fig. 2 for the 
situation where the power of the digital communication 
signal is equal to the power of the interference waveform 
being estimated. In this case, the overlapping spectra of the 
two waveforms in the absence of AWGN is shown in Fig. 3. 
 

III   SYSTEM PERFORMANCE WITH THE 
INTERFERENCE CANCELLER 

 
In this section, the performance of the wideband digital 
acoustic communication system is presented with the new 
interference canceller for the situation where the 
communication signal suffers from the interference of the 
co-channel navigational signal and AWGN. The parameters 
of the digital acoustic communication system are listed in 
Table I. The parameters of the non-linear interfering 
waveform are as given in the previous section. A ‘snapshot’ of 
the spectrum of the wanted signal (dotted line) and the 
interfering signal (solid line) are shown in Fig. 3 and indicate 
that the two signals do have a similar bandwidth. 
 
 

TABLE I 
SIGNAL PARAMETERS OF THE DIGITAL 

COMMUNICATION SYSTEM 
 

Carrier frequency 10kHz 
Sampling frequency 40kHz 
Data rate 5kbaud 
Modulation QPSK 
Duration of interference, Td 0.4352s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4  Scatter plot of the data constellation with the 
interference at an SNR of 10dB 

Figure 4 shows a scatter graph of the points of the received 
QPSK constellation before any interference cancellation is 
applied for the case where the SNR is 10dB. The signal to 
interference ratio (SIR) of the two signals is 0dB. The 
corresponding bit error probability of the digital acoustic 
communication system without interference cancellation is 
given by curve (i) of Fig. 5 as a function of the additive 
Gaussian noise. In this case the signal power level and the 
interference power level are maintained at a constant value 
and the noise power is varied to vary SNR.. It is clear that at 
this level of interference mutual co-channel operation of the 
two systems is impossible and the bit error probability is close 
to 0.5.  

However, after only one iteration of interference 
cancellation, the constellation of the received QPSK signal, 
shown in Fig. 6, is considerably improved compared with Fig. 
4. As a consequence, the bit error probability performance is 
substantially improved (as shown by curve (ii) of Fig. 5). 

Curve (iii) of Fig. 5 shows the bit error probability curve 
for the case where there is no interference and the digital 
acoustic communication system is corrupted only with 
additive Gaussian noise. It is apparent that although the new 
interference cancellation system has significantly improved 
the performance of the digital communication system, to the 
point where it is now feasible for the two systems to operate 
co-channel, there is still potential for improvement. It is clear, 
that the data errors in the communication system for the case 
of only one iteration of the interference cancellation scheme 
are due to the inaccuracies in the estimate of the interference 
waveform at this poor SIR due to the correlation between the 
data signal and the interference waveform, as shown in Fig. 2. 
In order to further improve the performance of the blind 
interference cancellation system, a successive interference 
strategy was used to reduce the effect of the digital acoustic 
data signal on the estimate of the interference signal. 
Referring to Fig. 1, in this approach, the QPSK data symbols 
are detected after the first iteration of interference cancellation 
using an appropriate detector. The detected data symbols are 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -2 0 2 4 6 8 10 12 14

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

P
ro

b
ab

ili
ty

 o
f b

it 
e

rr
or

(i) 

(ii) 

(iv) 

(iii) 

AWGN
With interference
1st iteration
2nd iteration

 
 

Fig. 5 Bit error probability of the communication system 
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Fig. 6  Scatter plots of the data constellation with interference 
removed at an SNR of 10dB 
 
 
then remodulated onto a regenerated carrier and this is used in 
the second stage of interference estimation to remove the 
effect of the digital data symbols from the chirped 
interference signal. This ‘cleaner’ interference signal is then 
re-estimated by the EA, and the re-estimate of the interfering 
signal cancelled from the original received signal. Curve (iv) 
of Fig. 5 shows the improvement in bit error probability 
performance. It will be seen that for large SNR, the improved 
probability in detecting the data symbols at the first iteration 
gives rise to improved interference estimation, and improved 
bit error performance at the second iteration. However, when 
the SNR is poor, the gain in performance reduces.     
 
 

V CONCLUSIONS 
This paper has introduced a new blind wideband interference 
estimator algorithm based on EAs that can be used in a 
successive interference cancellation system to minimise the 
mutual interference between co-channel systems. The 
performance of the new approach has been demonstrated for 
an underwater acoustic channel where, due to the limited 
bandwidth, co-channel interference between low power 
acoustic communication systems and navigation systems is a 
potential problem. It has been shown that the new EA 
interference estimator has almost ideal performance when 
detecting wideband non-linear chirps in additive Gaussian 
noise, but that correlation between the two signals reduces its 
performance. To combat this, a successive interference 
strategy is used to improve the performance of the 
communication system by the improving the estimate of the 
interfering signal. 
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