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Abstract

This paper describes a self organising spatio-temporal radar CFAR system that uses
multiple intelligent software agents to detect and adapt the processing to features in the
environment. By combining both temporal and spatial data gathering sufficient samples
can be collected to allow both the first and second order moments of the clutter
distribution to be approximated for each cell. By gathering higher order statistics to a
useful accuracy, more stable thresholds may be produced.

1. Introduction

This paper describes an improved method of targgéction applicable to littoral
environments where a wide range of clutter charsties are present. Classic detection
methods, such as cell averaging CFAR systems artteicimaps, attempt to gather a
small number of spatial or temporal samples fromuad the range-azimuth cell of
interest in order to estimate the local clutter aogse statistics. A threshold level can
then be calculated against which the amplitudénefreturn in the cell of interest can be
compared to determine the presence or absencpatéatial target.

In general the homogeneity and stationarity of ¢cheter in the littoral environment is
poor. If a large number of spatial samples is geth, implying that the statistics are
gathered over a wide area, the region around themger-test must be clear of artefacts
such as buoys, harbour walls, cliffs etc. Wheryanlfew samples are gathered, the
resulting estimate of the mean will be poor and dakulated higher central moments,
such as variance and skewness, will be highly mate and often biased. The resulting
poor statistical estimates mean that the detettiggshold must be placed higher than the
ideal to prevent excessive false alarms with tiseltehat small targets are not detected.
If a moderate spatio-temporal region is used thayatlata for the statistical analysis,
more points can be gathered and the estimateseo$tttistics will be more accurate,
however there is also a risk of undesirable fixayets falling within the region and
corrupting the estimates of the statistics.

To overcome these problems a novel self-organisystem based on the use of multiple
intelligent software agents (MISA) has been devetband is an improved version of the
system described in [1]. The key concept is thelatgtion of the spatio-temporal
coherence of true target tracks, but with practieaéls of processing. The agent system
detects features in the environment and modifies dreas over which the statistics
gathering processes are performed accordingly gheh the spatio-temporal data
gathering is more effective. The system has beghducoupled to an agent-based pre-
tracker which allows a depressed threshold to kel wend therefore low-observable
targets to be detected and tracked in a complexdltenvironment, whilst also extracting
information on the location of fixed targets efthe key design philosophy has been to
recognise that as the statistics of the scenehaneging too rapidly to allow calculation to
sufficient accuracy, any processing that is apptiad only ever be sub-optimal. Thus a
tracking system has been designed where sub-opiinslassumed, but the effects of



sub-optimal processing have been carefully consaland controlled, leading to a highly
effective, robust algorithm.
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Figure 1 Functional Arrangement of System

The system architecture is based on a hierarcisicatture of layers of objects and
intelligent agents.  Each agent or object reptssan individual radar cell that is
allowed, in conjunction with other cells, to setfyanise into target track&igure 1
Figure 1 shows a functional block diagram of thsteyn. The radar system is shown on
the left, feeding the radar returns into the lowesgels of the hierarchy. The radar returns
at this point will have had all necessary proceagsipplied prior to the application of a
CFAR system and a threshold.

The Temporal and Spatial Level objects form that®pTemporal CFAR Subsystem
whilst Levels 3 and 4 function as a multiple hypastis track forming sub-system. The
radar returns traverse the hierarchy, with highfidemce target detections being fed to
the main radar tracker as track segments.

The Level 3 and 4 pre-track system attempts tocésothe returns with previous returns
according to a set of simple rules that define ltkely feasible region that previous

returns could lie in. The pre-track system doesmake any explicit track predictions,

unlike conventional multiple hypothesis trackersit lbelies on associations between
returns producing ‘virtual’ tracks within the data.

Section 2 describes the operation of the self-asgam spatio-temporal CFAR algorithm,
section 3 presents example results of CFAR pracgssi simulated radar data. Sections
4 and 5 give a brief description of the trackingels, and section 6 concludes.

2. The Self-Organising Spatio-Temporal CFAR Subsystem

The Temporal, off, Level cells are arranged as elements of a rangedgh map. Each
cell contains two identical IIR filters that penfortemporal integration of successive
target returns and its square from the point represl by the co-ordinates. The IIR
filter that calculates the mean is described byféHewing recurrence relationship
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WhereT,(R6,t) is the temporal mean at each range, azimuth iamel k(R,0,t) are the
new raw input data. The filters produce the sumxgfonentially decaying contributions
from previous radar returns.

T,(R6,t)=

A similar filter, T,(R,0,t), that sums the squares of the input voltage$sc applied with
I(R6,t) replaced by its square. Thus the variance (heckfore standard deviation) may
be calculated a$,(R6,t) — T,(RO,)%. The temporal IIR filters can also be describgd b
the followingz-transform transfer function:
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The integration algorithm may be implemented inceght ways, for example to exploit
multiply-accumulate instructions within digital sigl processing devices.
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Figure2: Layout of cellsand agents, and agent operation in restricting spatial
integration

The range-azimuth cells are also part of the Sidagrar. The purpose of the spatial layer
is to perform a spatial integration across regiohfiomogenous clutter. A means of
adapting the regions over which spatial integraisoperformed is incorporated within the
layer.

Each range-azimuth cell has 4 intelligent agentsirzdt its borders, the bridging &
agents, shared with its neighbours, as shown iaréig. TheB agents prevent the spatial
integration from being disturbed by fixed targetS8achB agent monitors th& (R,6.t)
andT,(R6t) values of the cells on either side of it, anditherT,(R,0t) or T,(R6,t) are
consistently different, it switches to a blockintate and prevents spatial integration
occurring across the boundary. Each agent masijaiandos values, theu value being:

B,(R+6,t)=0.98, R+ 81— 1 sgfT, ROt ¥T, R+ Bt,))

Where the notatioB(R+,0,t) denotes the agent that lies between cBl|g) and R+1, 6)
etc. The agemB(R,6+,t) is the equivalent in the orthogonal grid direntioThe process
may also be extended to include Doppler and Elematimensions. The use of the
signum function rather than the raw difference Itssn an indication of the median rate
of dissimilarity rather than the mean of the diffiece between the agents.

The decision as to whether the agent should bloclogB(R, 6+, t) etc., is generated by
first identifying theB agents which separate cells having the greatesindlarity (one
agent forT, data and one fof,) . Thus the agent with the largest magnitudetfier
difference between means, and similarly the ageitih whe value with the largest
magnitude for the difference between the squarkdine are identified. The magnitudes
of these two values are then used to set a thigbotietermine the bridging agent’s
activity. The agent will recorB(R, 6+, t)=0 if either the value oB,| or B,| is greater
than 70% of the respective maximal values. It vétord a 1 otherwise.

Expressed in formal logic the truth value for thecking action, for a single azimut
agentis



B(RO+1) = -(B,(R&+1)>0B™ [B,(RH+1)> 0.B™)
Where TRUE and FALSE correspond to 1 and O respeyti
The state of th® agents surrounding each range-azimuth cell cantasused to infer

which range-azimuth cells may be fixed targets theodiscontinuities such as harbour
walls, coastline etc.

The integration of the means is then described by:

0.9S,ROL-1+ (S, R+ 19+ 1t- 1B R fx t )+ 0T, RAt,
S,(R&,t)= Z

0.9+> B(R+ 6+ t)+ 0.7
4

The integration of the squared returns is performeasimilar manner.

A threshold is calculated based on Sheesults and used to threshold the input data in
To prevent moving targets from disrupting the meem standard deviations, target
detections are censored. The censoring procegsyspreventsT level updates for any
cells in which detections have been made.

The controlled spatial integration allows more sk®pgo be gathered and more stable
and accurate estimates of mean and variance tdotaened with edges in the scene
preserved as sharp discontinuities. This procdlsvsa accurate thresholds to be
determined to within a few cells of features witthie environment.

3. Example Results

The processing has been applied to simulated gatarmodelled to resemble the output
from a low-cost non-coherent marine radar. Thensomodel is a realistic simulation

containing radial, crossing and spiralling targetsving amongst fixed targets and
through heavy sea clutter regions.

In the real marine radar used as a basis for thelation, the radar returns pass through a
logarithmic input amplifier. In the simulation itab been assumed that the underlying
clutter power distribution is a Weibull distributigthe simulation is actually a compound
noise distribution, not true Weibull) which the &ghmic amplifier transforms to a
Fisher-Tippett distribution. This has proved to #degood general assumption when
applied to the real radar data. The threshold lewaletecting targets is calculated as the
Smean plus a scaling factor times fstandard deviation. The scaling factor is adpliste
dynamically to maintain a reasonably stable falaenarate.

The figures below show the algorithm behaviour na example scan of the processing.
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Figure 3. Examplesof Returnsat the VariousLevels

The T, contains a significant amount of noise as onlygeral filtering has been applied,
but sharp edges in the scene are preserved exddiyT, is extremely noisy and could
not be used directly for calculating the thresHeltl. TheS, has had restricted spatial
integration applied and is far more stable. Thoacof the agents has restricted the
integration and preserved the sharp edges in #@escThes, is now stable enough to be
used for setting useful threshold levels. The aigetivation profile shows where strong
edges were identified and if the active cells drestered, the results can be used to
identify likely regions of fixed targets.



4. Potential Track Formation, Level 3 Agents

Conceptually Level 3 agents are formed with eachndgessociated with a target
detection. When a Level 3 agent is created, ikestrto form links with existing Level 3
agents that represewittual tracks within the multi-agent system.

The ‘Agent is a detection’ approach allows mangkrhypotheses to be formed for each
return and it is assumed that many tracks could paugh each Level 3 Agent. If
Doppler information is available it may be incorgi@d easily.

Agents marked as having the potential to be pam tfack are scanned to see if any
previous links are recorded. If links exist theg ahecked to determine if the speed and
direction changes are within a reachable set. ddleulation of the reachable set for

association of agents to allow links to be forméddlst keeping processing to an absolute
minimum is one of the cornerstones of this research

5. Track Validation, Level 4 Agents

The primary function of a Level 4 agent is to asgég most likely path through a series
of Level 3 agents and report the track to the ni@ck database if it appears to be a true
target. Level 4 agents are created when poteintieks are identified as a sequence of
links formed between Level 3 agents. The Levegdna scans the track, looking for all
the necessary correlations between stages thatatedia valid track is likely and
eliminates unlikely tracks in the process. Thi®gass allows crisp tracks to be
confirmed, some noise to be rejected, and areasa#rtainty to be identified.

Once a track has been validated the track’s elesvaet passed to the main radar tracker
and the corresponding Level 3 agents notifiedtthatrack has been validated

6. Conclusions

The self-adaptive spatio-temporal CFAR is provingdpé very effective at gathering large
numbers of statistically homogeneous data samptesmn fcomplex and difficult
environments. The ability to gather large samj#essmeans that robust estimates of
threshold locations can be generated, reducingufdions in false alarm rates and
allowing depressed thresholds to be used in cortibmavith a pre-track system. Even
though the approach is essentially cell-averagiR§R, the performance is proving to be
extremely reliable in complex environments and pssing losses are small as accurate
threshold locations can be calculated.

The system has a low memory and processor ovedrehdins easily on a desktop PC.
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