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Abstract—Automatic Target Recognitipn (ATR)_ in Synthetic process.
Aperture Radar (SAR) is a set of techniques which are able to The outputs of the detection step are then passed to a discrim
detect, discriminate and classify objects present in the observed nation stage, which should be able to reject further falsgeta

scene. Unfortunately the presence of speckle degrades target - . . . d
detection dramatically therefore denoising algorithms are nec- based on simple properties of potential targets, inclutioit

essary. Moreover sometimes other operations, such as incohate geometrical and electromagnetic effects. Once the detecti
averaging for instance, are used to increase the Constant Falseand discrimination stages have rejected as much clutter as
Alarm (CFAR) performance. Any operation as a consequence possible, the final stage of an ATR scheme consists of target
changes the background clutter model and often it is not possible classification using all the information in the data.

to describe it in a closed and manageable mathematical form, Th f K . in SAR i ffects th
therefore a direct solution of the Neyman-Pearson problem is € presence ol Speckieé noise in Images aftects the

not feasible and a suboptimal criterion, such as Exponential discrimination of potential target features, thereforeaising

or Gamma-distribution clutter model etc., is usually adopted. A algorithms are usually applied. Moreover other operations
consequence of the suboptimal global clutter model choice is the sych as incoherent averaging, are performed in order to
reduction of the information content of the SAR images which improve the detection performances. All of the describing

can affect heavily classifier performance. . .
This paper hence is concerning with a novel mathematical operations change the background clutter model (i.e.eslutt

approach for a local approximation of filtered SAR image Cu- Probability density functionPDF), which is crucial to estimate
mulative Density Function (CDF) in order to preserve/maximize detection process parameters.

the information content carried by a SAR/ATR system. Detection can be described in terms mbbability of false
alarm (Py,, also known agrror type | ) which represents the

. ) . probability that the clutter is considered erroneously & ptal
A Synthetic Aperture Radar/Automatic Target Recognltlo&rget by the detection subsystem, defined as:
(SAR/ATR) system usually consists of three main actions: '

detection, discrimination and classification [1], [2] ar@].[ Py, = / p(z|B)dx (1)
First, the entire SAR image is scanned for the target detecti Jt

stage which requires at least knowledge of the backgrouwdtere p(z|B) represents the probability that the pixelis
clutter model. It yields a large number of false alarms iglutter given a clutter modelB. The performance of the
addition to identifying potential targets, therefore itvery detector is also described in termsprbbability of detection
important to perform a very effective and efficient detettio(P;) which is defined as:

I. INTRODUCTION

oo
Pi= [ plalT)ds @)
Gamma distribution, v=2 t
0.4 T . . . . . e
G don wherep(z|T) is the likelihood function, i.e. the probability of
Appromating uncion| a data valuer when the target is present.

Unfortunately these two quantities are conflicting, therefan
optimization criterion has to be adopted to maximize e
with the constraintPy, < o (with 0 < a < 1).

In radar systems the Neyman-Pearson test is usually consid-
ered as the best criterion to overcome the optimizationlprob
and to determine which hypothesis is true (i.e. pixeis a
target or clutter respectively). It states that the targeleitected
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Fig. 1. Exponential approximation of a Gamma-distributiordésrparameter

v = 2). The idea is to approximate the;, area with a function which is The thresholdryp is usually selected to give a previously
easier to manage in the integral in (1). fixed value ofP, < a [1] and it can be estimated by inverting

y=p(x)




Windows size A k MSE Ts Ty €3 €4
2% 2 4.2748 | 0.9370 | 1.4093 10~ 10 | 33.6260 | 45.7100 | 1.2777 10— % | 1.2589 10— "
4x4 5.3647 | 1.4642 | 5.3014 10~ T | 20.0806 | 24.4402 | 1.6594 10— % | 1.2589 10—~
5x5 5.2757 | 1.6121 | 1.5704 10— | 17.4959 | 20.9140 | 2.2762 10—% | 1.5135 10—°
TABLE |

WEIBULL PARAMETERS APPROXIMATION: €5 (7 = 3,4) ENSURES THAT AT THE THRESHOLUT]- THE APPROXIMATING CDF ACTS AS AN LOWER BOUND
FOR THE APPROXIMATEDCDF

Probability density function of depeckling outcomes and Incoherent averaging
25 T T T

(1) (i.e. fixing the value ofPy,, find the smallest value of =
t > 0 that satisfies condition (1)), therefore the knowledge ot Window size o

5x5 Window size pdf

of the clutter model is crucial. Unfortunately in most cases o0z Gamm distribution v=8 b=1 model)
a closed form for the filtered clutter model is not available [\
thereby suboptimal solutions are adopted (e.g. Exporiemtia ooy /

Gamma-distributed clutter model [1] [3]). £
Fortunately for Detection problems a global clutter modgel i

not necessary, but an approximation of the filtered clutter

tails is sufficient because the;, represents numerically the
underlying area of the clutter model tail. / ‘ -
In this paper a novel mathematical approach is introduced to x
approximate the data output from the denoising process. The

idea, as depicted in Fig. 1, can be summarized as follows: tfig¢ 2. Probability density functions of outcomes from dettiag and
filed area underlying the global clutter model (i.e. Gamm, CftgrerrigtdZl\feé?r;nr?‘:g‘f;tsribmgﬂsingIgtr?éj sdé;tg %fr;;r;?f‘f global
density function with order parameter = 2 and scale

parameterl) has to be equal to the underlying area of the

approximating function and the initial approximation pdias | et (z0,90) and (z1,7:) be two points of the CDF which is

to be equal for both the models. Note that the approximatifg approximate and consider, for example, the Weibull CDF:
function should be a function which allows us to compute the

_(z\k _(z\k
Neyman-Pearson threshold through (1) easily. Pro=1-Pr(x<z)=1-(1-e 3 =B (4

In section II. the nov_el method is descnbgd. Smulat_mr@herek is the scale parameter andis the shape parameter
results are discussed in lll, whereas the choice of algosth of Weibull clutter model

parameters is analysed in IV. Finally the conclusions a8 o approximating CDF can be computed by solving:

reported in V.
{(%)\0)]f = —In(1 —yo) (5)
(5)" = =1 —y)

Unfortunately SAR signal processing tends to change tQﬁ]ich determines the values of Weibull parametgérs> 0
statistics of the background clutter model (as depicted Qcale) and\ > 0 (shape).
Fig. 2) and in most cases the outcomes are not computati I tor the choice of the parameters of (5), they will be
ally feasible in a closed mathematical form. Skolnik in [1 iscussed in the next sections. ’
introduces the classical Swerling model I, whereas Oliver
[3] suggests to use K-distribution clutter model and a Gamma I1l. RESULTS
approximation for large number of looks(i.e. the number of A set of 1000, 100 by 100 pixels, SAR images have been

radar antenna sub-apertures); Roy in [6] uses a K-dis&tbutgimyjated with a clutter model defined by a K-distribution as
form of non-Gaussian clutter. Levanon in [5], Anatassopsul sqjjows:

in [7] however use a global Weibull background clutter model
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Il. METHOD DESCRIPTION

A local approach of approximating clutter can be more effi- P(I) = 2 (LV>(L+V)/2

cient than the classical approach of approximating thetelut D(L)T(v) \(I)

distribution (i.e. assuming that outputs are Exponential o JLI\ /2
Gamma-distributed for instance). A local approach can be SISl ) [2 <<I>> ] (6)

made even easier if Cumulative Density FunctioBBFEs) are

considered. CDFs indeed can be mathematically more managbere L = 1 is the number of images averaged (number
able than Probability Density FunctionPIFs). Hence, our of looks) v = 8 is the order parameter/) = 8 image
problem can be summarized as followBinding a function intensity mean valuel'(-) is the Gamma FunctionkK is
which approximates the filtered outputs CDF so that ththe modified Bessel Function of second kind. As for the
approximating CDF value corresponding to the threshold idespeckling algorithm, Beltrami flow [22] (single iteratio
a lower bound for the value of the approximated CDF’ and window size5 by 5) has been adopted. The despeckled



Example of approximated COF and approxmating Welbul mode! The parameters of approximating CDF are reported in Table

0.9k —— Simulated CDF ]
: ——— Approximating Weibull CDF _ .
08 1 Windows size Ty Ty (est.)
o7l ] 2% 2 45.7246 | 45.7100
sk / , ] 4x4 24,4524 | 24.4402
. 5 X5 20.8721 | 20.9140
8 0.5 ’ 4
oa-/ ] TABLE IlI
03,/“ | COMPARISON THRESHOLDS THE ACTUAL THRESHOLD IS COMPARED
] WITH THE ESTIMATED ONE FORPy, = 10™% BY USING THE LOCAL
o2 ] MODEL (5)
01f ]

I: A andk are the parameters estimated through (5), whereas

Fig. 3. Example of approximation globally (MSE0.0057): The Weibull the Mean Squared ErroNKSE) be_tween the apprommat_m_g_

model (obtained by a filtered images set which has been incuiheeveraged CDF and the approximated one is computed from the initial

‘]’;’“h ”On'ovef'ﬁ!Ppledz by 2 pixels window) Wilth sza[]”etefi\ = 3-5370 point of approximationZs and 7, however are the thresholds

CD_F.O.8677 (initial point zo = 32) respectively and the processe |mage%omputed (fOI’Pfa equal t010—3 and 10—2 respectively) by
using the complementary of (4):

Example of approximated CDF and approximating Weibull model

1 T
— Simulated CDF
0.9999 - Approximating Weibull CDF|

0.9998 -

T, = A= 1In Pp,]* 7)

As reported in Table Il and Table Il the thresholds are bette
estimated for small values of the,,.
The values of thresholds have been also tested by congiderin
the frequency (i.e. the percentage of pixels) of filtered and
averaged images pixels, as previously described, whickegkc
them (No. of samples2 x 2 2.5- 106, 4 x 4 6.25 - 10° and
5 x 5 4-10° respectively). As reported in Table 1V, the value

/ of the thresholds produces values of error type | smallem tha
e w wm ow w0 @ w e w original Py, (Pr, and Pr, represent the probability of clutter
pixels which exceed the threshol@s and T, respectively).

Fig. 4. Example of approximation locally (MSE 10—12): The Weibull ~ The local approximated clutter model has been compared
model (obtained by a filtered images set which has been incotheesxreraged

0.9997 -

0.9996

CDF

0.9995

0.9994

0.9993

0.9992 -

0.9991

with non-overlapped by 2 pixels window) with parameters = 3.5370 Windows size|  Pr. Pr,

k = 0.8677 (initial point zo = 32) respectively and the processed images %2 =~ 103_4 ~10-7

CDF. 4x4 ~107% [ 1077
5x5 ~10~% | ~107°

i _ ped TABLE IV
images have been then averaged over non-overiap ' ESTIMATED Py, BY USING A LOCAL APPROXIMATED CLUTTER MODEL

4 by 4 and 5 by 5 pixels windows. Finally the CDFs have APPROACH
been computed.
The computed CDF have been approximated by using (5) with
by two global clutter models: Exponential and Gamma clutter

Windows size| T3 T3 (est) model ¢ = 8 and scale parameté) respectively.
2x2 32.8833 | 33.6260 As for the Exponential clutter model [3], the threshold is
x4 19.6820 | 20.0806 computed by considering:
5x5 T7.1617 | 17.4950 P y g
TABLE Il T, = —oc1n Py, (8)
COMPARISON THRESHOLDS THE ACTUAL THRESHOLD IS COMPARED . .
WITH THE ESTIMATED ONE FORPf, = 1073 BY USING THE LOCAL where o, is the mean power of the clutter. The estimated
MODEL (5) thresholds are reported in Table V.

As for the Gamma-distribution clutter model [16], the thres

olds are computed by inverting numerically the following
following parametersiy = 15 (yo = CDF(x)), whereas formula:

x1 is the first value of the approximated CDF such that v—1 (%)i -
|CDF(z1) — 1| <1074 (y1 = CDF(x1)). Pra=)_ el 9)
An example is depicted in Fig. 3 and Fig. 4, which represent =0

the same solution seen globally and locally respectively. wherer = 8 andf = 1 the order parameter and scale parame-
The simulations are performed in order to compute the threghr of the Gamma-distribution respectively. As a consegeen
old for Py, equal to10~2 and10~*. the threshold assume valueg; = 19.2104, 7y = 20.1830



ngo:v; . 4792 - 86?65 . be preserved/emphasized better (e.g. estimation of SAR/AT
%1 317897 | 463856 parameters for the discrimination of potential targetshsuc
5X5 26.5142 | 35.3522 as Mass, Diameter, Rotational inertia, Percent bright CFAR
TABLE V Standard deviation etc. [3] can be evaluated better) if a

ESTIMATED THRESHOLDS BY USING A GLOBALEXPONENTIAL CLUTTER ~ @pproximating local clutter model is adopted.

MODEL In this paper a Weibull's model have been adopted, but also
Gaussian, Log-normal CDFs can be adopted as approximating
CDF if necessary.
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