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Abstract—Automatic Target Recognition (ATR) in Synthetic
Aperture Radar (SAR) is a set of techniques which are able to
detect, discriminate and classify objects present in the observed
scene. Unfortunately the presence of speckle degrades target
detection dramatically therefore denoising algorithms are nec-
essary. Moreover sometimes other operations, such as incoherent
averaging for instance, are used to increase the Constant False
Alarm (CFAR) performance. Any operation as a consequence
changes the background clutter model and often it is not possible
to describe it in a closed and manageable mathematical form,
therefore a direct solution of the Neyman-Pearson problem is
not feasible and a suboptimal criterion, such as Exponential
or Gamma-distribution clutter model etc., is usually adopted. A
consequence of the suboptimal global clutter model choice is the
reduction of the information content of the SAR images which
can affect heavily classifier performance.
This paper hence is concerning with a novel mathematical
approach for a local approximation of filtered SAR image Cu-
mulative Density Function (CDF) in order to preserve/maximize
the information content carried by a SAR/ATR system.

I. I NTRODUCTION

A Synthetic Aperture Radar/Automatic Target Recognition
(SAR/ATR) system usually consists of three main actions:
detection, discrimination and classification [1], [2] and [3].
First, the entire SAR image is scanned for the target detection
stage which requires at least knowledge of the background
clutter model. It yields a large number of false alarms in
addition to identifying potential targets, therefore it isvery
important to perform a very effective and efficient detection
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Fig. 1. Exponential approximation of a Gamma-distribution (order parameter
ν = 2). The idea is to approximate thePfa area with a function which is
easier to manage in the integral in (1).

process.
The outputs of the detection step are then passed to a discrimi-
nation stage, which should be able to reject further false targets
based on simple properties of potential targets, includingboth
geometrical and electromagnetic effects. Once the detection
and discrimination stages have rejected as much clutter as
possible, the final stage of an ATR scheme consists of target
classification using all the information in the data.
The presence of speckle noise in SAR images affects the
discrimination of potential target features, therefore denoising
algorithms are usually applied. Moreover other operations,
such as incoherent averaging, are performed in order to
improve the detection performances. All of the describing
operations change the background clutter model (i.e. clutter
probability density function,PDF), which is crucial to estimate
detection process parameters.
Detection can be described in terms ofprobability of false
alarm (Pfa, also known aserror type I ) which represents the
probability that the clutter is considered erroneously a potential
target by the detection subsystem, defined as:

Pfa =

∫

∞

t

p(x|B)dx (1)

where p(x|B) represents the probability that the pixelx is
clutter given a clutter modelB. The performance of the
detector is also described in terms ofprobability of detection
(Pd) which is defined as:

Pd =

∫

∞

t

p(x|T )dx (2)

wherep(x|T ) is the likelihood function, i.e. the probability of
a data valuex when the target is present.
Unfortunately these two quantities are conflicting, therefore an
optimization criterion has to be adopted to maximize thePd

with the constraintPfa ≤ α (with 0 ≤ α ≤ 1).
In radar systems the Neyman-Pearson test is usually consid-
ered as the best criterion to overcome the optimization problem
and to determine which hypothesis is true (i.e. pixelx is a
target or clutter respectively). It states that the target is detected
if:

p(x|T )

p(x|B)
> τNP (3)

The thresholdτNP is usually selected to give a previously
fixed value ofPfa ≤ α [1] and it can be estimated by inverting



Windows size λ k MSE T3 T4 ǫ3 ǫ4

2 × 2 4.2748 0.9370 1.4093 10
−10

33.6260 45.7100 1.2777 10
−4

1.2589 10
−7

4 × 4 5.3647 1.4642 5.3014 10
−11

20.0806 24.4402 1.6594 10
−4

1.2589 10
−7

5 × 5 5.2757 1.6121 1.5704 10
−11

17.4959 20.9140 2.2762 10
−4

1.5135 10
−5

TABLE I
WEIBULL PARAMETERS APPROXIMATION: ǫj (j = 3, 4) ENSURES THAT AT THE THRESHOLDTj THE APPROXIMATING CDF ACTS AS AN LOWER BOUND

FOR THE APPROXIMATEDCDF

(1) (i.e. fixing the value ofPfa, find the smallest value of
t > 0 that satisfies condition (1)), therefore the knowledge
of the clutter model is crucial. Unfortunately in most cases
a closed form for the filtered clutter model is not available
thereby suboptimal solutions are adopted (e.g. Exponential or
Gamma-distributed clutter model [1] [3]).
Fortunately for Detection problems a global clutter model is
not necessary, but an approximation of the filtered clutter
tails is sufficient because thePfa represents numerically the
underlying area of the clutter model tail.
In this paper a novel mathematical approach is introduced to
approximate the data output from the denoising process. The
idea, as depicted in Fig. 1, can be summarized as follows: the
filled area underlying the global clutter model (i.e. Gamma
density function with order parameterν = 2 and scale
parameter1) has to be equal to the underlying area of the
approximating function and the initial approximation point has
to be equal for both the models. Note that the approximating
function should be a function which allows us to compute the
Neyman-Pearson threshold through (1) easily.
In section II the novel method is described. Simulations
results are discussed in III, whereas the choice of algorithms
parameters is analysed in IV. Finally the conclusions are
reported in V.

II. M ETHOD DESCRIPTION

Unfortunately SAR signal processing tends to change the
statistics of the background clutter model (as depicted in
Fig. 2) and in most cases the outcomes are not computation-
ally feasible in a closed mathematical form. Skolnik in [1]
introduces the classical Swerling model II, whereas Oliverin
[3] suggests to use K-distribution clutter model and a Gamma
approximation for large number of looksL (i.e. the number of
radar antenna sub-apertures); Roy in [6] uses a K-distributed
form of non-Gaussian clutter. Levanon in [5], Anatassopoulos
in [7] however use a global Weibull background clutter model.
A local approach of approximating clutter can be more effi-
cient than the classical approach of approximating the clutter
distribution (i.e. assuming that outputs are Exponential or
Gamma-distributed for instance). A local approach can be
made even easier if Cumulative Density Functions (CDFs) are
considered. CDFs indeed can be mathematically more manage-
able than Probability Density Functions (PDFs). Hence, our
problem can be summarized as follows:’Finding a function
which approximates the filtered outputs CDF so that the
approximating CDF value corresponding to the threshold is
a lower bound for the value of the approximated CDF’.
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Fig. 2. Probability density functions of outcomes from despeckling and
incoherent averaging filters. The simulated data are comapredwith a global
clutter model: Gamma distributionν = 8 and scale parameterb = 1.

Let (x0, y0) and (x1, y1) be two points of the CDF which is
to approximate and consider, for example, the Weibull CDF:

Pfa = 1 − Pr(x ≤ x) = 1 − (1 − e−( x

λ
)k

) = e−( x

λ
)k

(4)

wherek is the scale parameter andλ is the shape parameter
of Weibull clutter model.
The approximating CDF can be computed by solving:

{

(

x0

λ

)k
= − ln(1 − y0)

(

x1

λ

)k
= − ln(1 − y1)

(5)

which determines the values of Weibull parametersk > 0
(scale) andλ > 0 (shape).
As for the choice of the parameters of (5), they will be
discussed in the next sections.

III. R ESULTS

A set of 1000, 100 by 100 pixels, SAR images have been
simulated with a clutter model defined by a K-distribution as
follows:

P (I) =
2

Γ(L)Γ(ν)

(

Lν

〈I〉

)(L+ν)/2

×I(L+ν−2)/2Kν−L

[

2

(

νLI

〈I〉

)1/2
]

(6)

where L = 1 is the number of images averaged (number
of looks) ν = 8 is the order parameter,〈I〉 = 8 image
intensity mean value,Γ(·) is the Gamma Function,K is
the modified Bessel Function of second kind. As for the
despeckling algorithm, Beltrami flow [22] (single iteration
and window size5 by 5) has been adopted. The despeckled
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Fig. 3. Example of approximation globally (MSE= 0.0057): The Weibull
model (obtained by a filtered images set which has been incoherently averaged
with non-overlapped2 by 2 pixels window) with parametersλ = 3.5370

k = 0.8677 (initial point x0 = 32) respectively and the processed images
CDF.
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Fig. 4. Example of approximation locally (MSE≈ 10
−12): The Weibull

model (obtained by a filtered images set which has been incoherently averaged
with non-overlapped2 by 2 pixels window) with parametersλ = 3.5370

k = 0.8677 (initial point x0 = 32) respectively and the processed images
CDF.

images have been then averaged over non-overlapped2 by 2,
4 by 4 and 5 by 5 pixels windows. Finally the CDFs have
been computed.
The computed CDF have been approximated by using (5) with

Windows size T3 T3 (est.)
2 × 2 32.8833 33.6260

4 × 4 19.6820 20.0806

5 × 5 17.1617 17.4959

TABLE II
COMPARISON THRESHOLDS: THE ACTUAL THRESHOLD IS COMPARED

WITH THE ESTIMATED ONE FORPfa = 10
−3 BY USING THE LOCAL

MODEL (5)

following parameters:x0 = 15 (y0 = CDF (x0)), whereas
x1 is the first value of the approximated CDF such that
|CDF (x1) − 1| ≤ 10−4 (y1 = CDF (x1)).
An example is depicted in Fig. 3 and Fig. 4, which represent
the same solution seen globally and locally respectively.
The simulations are performed in order to compute the thresh-
old for Pfa equal to10−3 and10−4.

The parameters of approximating CDF are reported in Table

Windows size T4 T4 (est.)
2 × 2 45.7246 45.7100

4 × 4 24.4524 24.4402

5 × 5 20.8721 20.9140

TABLE III
COMPARISON THRESHOLDS: THE ACTUAL THRESHOLD IS COMPARED

WITH THE ESTIMATED ONE FORPfa = 10
−4 BY USING THE LOCAL

MODEL (5)

I: λ andk are the parameters estimated through (5), whereas
the Mean Squared Error (MSE) between the approximating
CDF and the approximated one is computed from the initial
point of approximation.T3 andT4 however are the thresholds
computed (forPfa equal to10−3 and 10−4 respectively) by
using the complementary of (4):

Ts = λ [− ln Pfa]
1

k (7)

As reported in Table II and Table III the thresholds are better
estimated for small values of thePfa.
The values of thresholds have been also tested by considering
the frequency (i.e. the percentage of pixels) of filtered and
averaged images pixels, as previously described, which exceed
them (No. of samples:2 × 2 2.5 · 106, 4 × 4 6.25 · 105 and
5× 5 4 · 105 respectively). As reported in Table IV, the value
of the thresholds produces values of error type I smaller than
original Pfa (PT3

andPT4
represent the probability of clutter

pixels which exceed the thresholdsT3 andT4 respectively).
The local approximated clutter model has been compared

Windows size PT3
PT4

2 × 2 ≈ 10
−4

≈ 10
−5

4 × 4 ≈ 10
−4

≈ 10
−5

5 × 5 ≈ 10
−4

≈ 10
−5

TABLE IV
ESTIMATED Pfa BY USING A LOCAL APPROXIMATED CLUTTER MODEL

APPROACH

by two global clutter models: Exponential and Gamma clutter
model (ν = 8 and scale parameter1) respectively.
As for the Exponential clutter model [3], the threshold is
computed by considering:

Ts = −σc lnPfa (8)

where σc is the mean power of the clutter. The estimated
thresholds are reported in Table V.
As for the Gamma-distribution clutter model [16], the thresh-

olds are computed by inverting numerically the following
formula:

Pfa =

ν−1
∑

i=0

(x
θ )i

i!
e(− x

θ
) (9)

whereν = 8 andθ = 1 the order parameter and scale parame-
ter of the Gamma-distribution respectively. As a consequence
the threshold assume values:T3 = 19.2104, T4 = 20.1830



Windows size T3 T4

2 × 2 64.9240 86.5654

4 × 4 34.7892 46.3856

5 × 5 26.5142 35.3522

TABLE V
ESTIMATED THRESHOLDS BY USING A GLOBALEXPONENTIAL CLUTTER

MODEL

Windows size PT3
PT4

2 × 2 ≈ 10
−6 < 10

−6

4 × 4 < 10
−6 < 10

−6

5 × 5 < 10
−6 < 10

−6

TABLE VI
ESTIMATED Pfa BY USING A GLOBAL EXPONENTIAL CLUTTER MODEL

respectively.
By comparing Table IV, Table VI and Table VII it is clear
that the proposed method is more efficient than other clutter
models.

Windows size PT3
PT4

2 × 2 ≈ 10
−2

≈ 10
−3

4 × 4 ≈ 10
−4

≈ 10
−4

5 × 5 ≈ 10
−4

≈ 10
−5

TABLE VII
ESTIMATED Pfa BY USING A GLOBAL GAMMA (ν = 8 AND SCALE

PARAMETER1) CLUTTER MODEL

IV. PARAMETERS ANALYSIS

The parameters which have been chosen accurately are the
points (x0, y0) and (x1, y1). We tested the our methods by
consideringx1 the first value of the approximated CDF such
that |CDF (x1) − 1| ≤ 10−4 (i.e. y1 = CDF (x1)).
The value of thresholds seems to be insensitive to
the value of the initial point which has been fixed to
x0 = 2 · mean value of data. Moreover we suggest to
introduce two margins0 < ηj < 10−8, j = 0, 1 (subtracted
to the actual valuesyj) in order to obtain positive errors
ǫi = CDFi,approximated − CDFi,approximating (see last two
columns of Table I, fori = 3, 4). Under this assumption a
solution is always found and the estimated thresholds shows
that the corresponding estimatedPfa is always smaller than
the expected one.

V. CONCLUSION

This paper focused on the efficiency of an approximated
local clutter model. Three models have been investigated: a
local approximation, Exponential and Gamma clutter model.
The results confirm that a local approach can be considered
more suitable than a global model in terms of CFAR thresholds
estimation as well as model fitting of the clutter tail. As
a consequence the information content of CFAR input can

be preserved/emphasized better (e.g. estimation of SAR/ATR
parameters for the discrimination of potential targets such
as Mass, Diameter, Rotational inertia, Percent bright CFAR,
Standard deviation etc. [3] can be evaluated better) if a
approximating local clutter model is adopted.
In this paper a Weibull’s model have been adopted, but also
Gaussian, Log-normal CDFs can be adopted as approximating
CDF if necessary.
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