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Abstract

In the design of new, more sophisticated missile systems, simulations need to be

realistic and fast. Realistic target models are just as important as realistic models

of the missile, but have often been overlooked in the past. Existing methods for

creating realistic target models require considerable computational resources. This

thesis addresses the problem of using limited resources to create realistic target

models for simulating engagements with radar guided homing missiles.

A multiple genetic algorithm approach is presented for converting inverse syn-

thetic aperture radar images of targets into scatterer models. The models produced

are high �delity and fast to process. Results are given that demonstrate the gener-

ation of a model from real data using a desktop computer.

Realistic models are used to investigate the e�ects of target �delity on the missile

performance. The results of the investigation allow the model complexity to be

traded against the �delity of the representation to optimise simulation speed.

Finally, a realistic target model is used in a feasibility study to investigate the

potential use of glint for target manoeuvre detection. Target glint is considered

as noise in conventional missile systems and �ltered to reduce its e�ects on the

tracking performance. The use of glint for target manoeuvre detection would provide

a cheap and novel alternative to the optical techniques currently being developed.

The feasibility study has shown that target manoeuvre detection using glint may be

as fast as optical techniques and very reliable.

Keywords
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Target Manoeuvre Detection.
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1. Introduction

1.1. Introduction

Radar target tracking and radar guided missiles are an essential part of modern

weapons systems. Aircraft technology is advancing with aeroplanes becoming faster,

more manoeuvrable and more di�cult to detect. The accuracy requirements of the

tracking systems are being pushed to the limits. The technological problems are

further aggravated by �nancial constraints on product development. Flight testing

of missiles is very expensive.

Synthetic missiles may be 
own in a virtual world against simulated targets.

Simulation reduces the costs involved in researching into new homing and guidance

techniques. These simulated engagements need to be realistic to derive any bene�ts.

To be realistic, the parameters that a�ect the engagement must be modelled in a

detailed manner. There are many di�erent areas that need to be addressed in

developing a full engagement model [1]. This thesis concentrates on the radar cross

section aspects of the target modelling.

This chapter begins by de�ning the problem to be solved and then investigates

the current approaches in the open literature. A package of work is de�ned and the

approach to be taken and �nal objectives described. Finally, the original work and

publications generated during the research are detailed.

1.2. Problem De�nition

Target tracking algorithms perform best if the target manoeuvre is constant. Any

changes mean the tracking algorithms must �rst identify that the target has altered

course, and then update the track details [2, 3]. If indication could be given that a

target is changing its track, the guidance algorithm could be improved.

Target glint (chapter 6) a�ects the missile's estimation of target acceleration and

is usually treated as noise. I have proposed that it may be possible to use target

glint to give indications of rapid target attitude changes, such as banking before

turning. The missile could then be given advance warning of an evasive manoeuvre.

In order to test this proposal, a simulation environment is required that allows the

e�ects of glint on the missile to be observed. Target manoeuvre detection using glint

is the motivation for the work covered in this thesis.

Most guidance models treat the target as an ideal source and add Gaussian noise

or �xed o�sets to the acceleration estimates ([4, 5] for example). More sophisticated

models add coloured noise to the acceleration estimates (eg. [6, 7, 8]). These models

are more realistic but the errors are not correlated with the missile and target motion

and therefore do not create true glint e�ects.

1



CHAPTER 1. INTRODUCTION 2

The main problem addressed in this thesis is the production of target models

that can be used to create realistic radar cross sections for any aspect angles. The

following requirements must be satis�ed by a model.

1. Fast to process { The model will be used thousands of times in each simula-

tion. If genetic algorithms or arti�cial neural nets are used during the guidance

system design process, many thousand trials will be performed.

2. High �delity { In some situations it may be desirable for the target to rep-

resent a speci�c vehicle.

3. High resolution { Glint spikes have been observed that are less than 1=100th

of a degree wide. The narrow spikes can become signi�cant if the rate of rela-

tive angular rotation (between target and missile) is low. The model resolution

should typically be at least 1=200th of a degree to model glint 
uctuations ac-
curately.

4. Correlation { Echo amplitude should be correlated with echo phase to give

realistic glint e�ects in the seeker head. The echo signal must be correlated to

relative motion.

5. Low storage requirements { It must be possible to contain the whole model

in the machine's physical memory to prevent excessive disk use.

The processing and memory requirements should be suitable for a typical desktop

PC. The following assumptions will be made.

1. The target has a rigid body that does not 
ex in manoeuvre { Any re-

quirements for complicated structural analysis of the target are thus removed.

2. Radar is continuous wave or uses pulses that are long compared

to the target { Each radar pulse illuminates the whole target, allowing av-

erage radar cross section measurements to be taken directly, rather than by

integrating range pro�les.

Once a realistic model has been created, trials must be performed to establish

the e�ects of �delity on the engagement, thus ensuring a realistic target. The glint

tracking hypothesis may then be tested.

1.3. Existing Modelling Techniques

1.3.1. Introduction

A search of the open literature to �nd existing solutions to the modelling problem

revealed a number of potential techniques. Broadly, the radar cross section of a

target may be found by direct measurement or by calculation. Four main classes of

solution have been identi�ed and are discussed below:

1. Real data { Data are measured directly from the target or a scale model.
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2. Scatterer models { Groups of ideal point scatterers are modelled to produce

a radar cross section pattern. The scatterers may be positioned at random or

placed so as to reproduce a speci�c cross section pattern.

3. Statistical models { Data are generated randomly but conform to typical

probability density functions.

4. Structural models { The scattering calculations are based upon a model of

the physical structure of the target.

Radar cross section is a function of the angular orientation and shape of the

scattering body, the frequency, and the polarisation of the transmitter and receiver.

The radar cross section of a target is de�ned as:

A measure of the power that is returned or scattered in a given direction,

normalised with respect to the power density of the incident �eld.

� = 4� lim
R!1

R2 j ~Esj2
j ~Eij2 = 4� lim

R!1
R2 j ~Hsj2
j ~H ij2 (1.1)

Where ~Es, ~Hs are the scattered electric and magnetic �elds respectively,

and ~Ei, ~H i are the incident �elds. [9, Chapter 3]

1.3.2. Real Data

Directly measured results are di�cult to obtain in practice, especially with full scale

targets ([10, 11, 12] for example). Scale models may be used but any discrepancies

and small deviations will a�ect the measured results. Measurement noise may hide

some small details and ultimately the resolution of the data has �nite limits for

any given measurement angle segment. Out-of-plane data are usually awkward to

measure as the target orientation with respect to the ground has to be altered. This

can create slinging and handling problems. Measuring a full scale target over 4�

steradians to a useful resolution (ie. 200 points per degree) is often impractical.

Measured data though give a reliable representation of a real target; although

small changes will occur in-
ight due to structural distortions. These distortions can

be minimised by suitable slinging and support techniques during measurement, in-

troducing airframe stresses similar to those experienced whilst the target is airborne.

Careful attention to supports, slinging wires and measurement chamber con�gura-

tion is necessary to prevent artifacts being present in the measured data [9, Page

331{345][13].

1.3.3. Scatterer Models

Small numbers of randomly distributed, independent, isotropic point-scatterers are

often used for theoretical radar cross section analysis ([14] for example). The cross

section for a typical point scatterer model may be calculated using Equation 1.2.

�T =

�����
nX
k=1

p
�k e

j

�
4�d

k

�

������
2

(1.2)
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The total radar cross section of the target, �T , is de�ned as the coherent sum

of the echos from the n scatterers, each scatterer with its own cross section, �k [15,

Page 23]. If the number of scatterers is large and the viewing angle segment is

small, the model may be �tted to any arbitrary cross section pattern. Chapter 4

gives more details regarding radar cross section calculation of simple and extended

point scatterer models.

Information about the scattering centres may be obtained through Inverse Syn-

thetic Aperture Radar (ISAR) imaging (chapter 2) where two and three dimensional

images may be created from radar cross section data obtained for both angle and

frequency. ISAR images of point scatterer models exhibit the same spatial charac-

teristics as real targets.

A strong argument may be made for considering targets to be collections of

small numbers of point scatterers when the target is viewed at high frequency. Most

papers obtained relating to target signature analysis, ie., identifying targets from

their radar cross section, are based on the identi�cation and comparison of the major

scattering centres (eg. [16, 17]).

Point scatterer models have low storage requirements and radar cross section

calculations are quick to perform. Unfortunately, although it should be possible to

generate models to �t any arbitrary pattern, the �tting process can be di�cult in

practice.

1.3.4. Statistical Models

Few statistical radar cross section models appear to have been developed. Sandhu

and Saylor [18] perform a rigorous analysis of glint and radar cross section statistics

and compare these results to real data. Their methods assume that the target

is in the far-�eld and that the phase front across a true phase-comparison missile

seeker head is near linear (chapter 6). Thus these results may not apply to end-game

scenarios where the target is engaged in the near-�eld. Further analysis of the e�ects

on monopulse seekers is explored by Tullsson [19].

Daba and Bell [14] develop the statistics of small numbers of randomly placed

scatterers and compare them to empirically determined probability density func-

tions. Gordon [20] derives probability density equations for the radar cross section

of simple convex bodies, ie., ovoids. Borden and Mumford [21] develop the statistics

of a point scatterer model and use them to create a synthetic radar cross section

and glint generator. The generator is based on �ltering and combining Gaussian

random processes. This process can be used to generate realistic cross section data

but they will be uncorrelated to target motion.

1.3.5. Structural Models

Introduction

Calculating the true radar cross section of a target is not trivial. The methods of

approaching the problem fall into three broad categories; dominant feature analysis,

quasi-optical methods and element analysis. Many methods though use a combina-

tion of the techniques to obtain better cross section approximations.
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Dominant feature analysis

Analysing the dominant features of a target is the classical technique for developing

the radar cross section pattern. The method is usually performed by hand [22] but

can be automated [23]. The target is assumed to have a radar cross section that is

similar to a target constructed from basic primitive shapes such as cones, cylinders,

wires, spheres, and 
at plates. The procedure is to identify the parts of the target

that are likely to be prominent in the radar signature; for example, the leading edges

of wings, fuselage, cavities etc.. The features are modelled using primitive shapes

and then the estimated contribution to the cross section for each of the identi�ed

features is plotted. A general pattern of radar cross section 
uctuation with respect

to angle is thus created. This method is concerned solely with the magnitude of

the radar cross section, the e�ects of phase interactions are ignored. E�ects caused

by multiple bounces of the signal, such as the large echo from a trihedral corner

re
ector, are accounted for directly in this method.

Quasi-optical methods

Many computational packages have been developed based on quasi-optical methods.

These methods rely on the approximation that the radar signal behaves in a similar

way to light when the target features are greater than about ten wavelengths in size.

This condition is termed the optical region of operation [9, Page 53]. The packages

use three-dimensional CAD models to represent the targets. The targets are based

on either solid modelling or surface representations. Surface representations range

from simple faceted models through to complex spline surfaces. All of the packages

are capable of generating good approximations to the true radar cross sections for

the supplied models, at the expense of computation time [24, 25].

The models that represent the target surface as small triangular facets are some

of the simplest [26, 27, 28, 29]. Unfortunately, faceted surfaces have inherent false

discontinuities at the junctions between the faces and can generate spurious signals.

The most accurate cross section predictions appear to be obtained through using

structures built with solid models or curved patches. Near continuous surfaces can

be produced with these methods that alleviate facet noise [30, 31, 32, 25].

Many of the systems use the physical optics [9, Pages 119{130] approximations

to generate the basic radar cross section and then apply the method of moments [33]

or method of equivalent currents [9, Pages 136{139] to account for e�ects caused by

di�raction and discontinuities [30, 31, 27, 28]. Others achieve similar results through

the physical theory of di�raction [9, Pages 140{144][25, 32].

Most of the computation time is expended in the ray-tracing elements of the pro-

cessing. To counter this problem, most of the approaches use dedicated hardware-

graphics-accelerator cards to produce images of the target. Hidden surfaces are

removed and the image colours are used to represent the surface outward unit nor-

mals [25]. Cross section processing is then performed on the rendered image using

look-up tables for speed. Accuracy is sacri�ced as each surface normal is quantised

into three 8-bit values. This approach allows the use of o�ce computers with graph-

ics accelerator cards to produce a reasonable approximation to the cross section for a

speci�c angle and frequency in a few seconds. Indications of the processing require-

ments for generating a radar cross section pattern with conventional ray tracing are
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given by Turner [28]. Using a Cray 1S, a fairly simple tank or aircraft would take

around 1 second per frame to render. Similar times are obtained using dedicated

graphics hardware and a conventional PC.

Few of the methods take account of small gaps on the model surface [31, 26] or

surface travelling waves. Kim and Ling [34] derive a ray technique for large inho-

mogeneous objects such as aircraft and missile plumes. This technique is also used

for developing range pro�les and ISAR images directly from the CAD models [35].

Element analysis

All the above methods are restricted to high frequency analysis where the bodies are

electrically large and therefore mainly in the optical region. For smaller bodies that

lie in the Raleigh and Mie regions, the computational approach is usually based on

�nite element analysis [36, 37]. These methods are also used to compute the radar

cross sections of di�cult subjects such as cavities [38] and targets coated with radar

absorbent material [39].

Discussion

The data generated from surface models can usually be considered as realistic. The

surface model used as the basis for the calculations must be modelled to very high

levels of �ne surface detail. It has been shown that minor discrepancies in the

models can lead to major deviations in the radar cross section [32, 40, 28]. The

cross section can be calculated to any required resolution and from any angle and

range. As the model is virtual, no supports are necessary and so no support artifacts

occur in the data. The only noise present in the data will be due to the precision

of the calculations performed to generate the radar cross section. Unfortunately,

calculating radar cross section in real-time is unlikely to be possible in the near

future, even with very powerful computers.

Andersh et al. [32] concludes that improper modelling of small features and

materials contribute to major errors in the predictions. He also states that the

ultimate level of �delity for CAD geometry is unknown. Turner [28] demonstrates

this problem, showing radar cross section calculations for an un�tted and a �tted

ship. The resulting cross section plots are dramatically di�erent whereas the CAD

drawing of the �tted ship appears to di�er only in surface detail. The e�ects of �ne

surface detail are analysed by Williams [40] who indicates that the e�ects of the

surface micro-geometry often dominate the radar cross section for large, complex

bodies.

1.3.6. Conclusions

Lees and Davies [27] discuss the pros and cons of many prediction methods with

respect to their accuracy at estimating the true radar cross section of a body. They

conclude that good surface representations are required if the radar cross section

pattern is to be predicted accurately. For this study, true cross section calculations

are not the objective. Only signals that have similar characteristics to those seen

by a missile, with a monopulse seeker head, 
ying at the target are required.
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As the only true way to determine what the seeker head will see and do is to 
y

the missile at the target, a synthetic missile must be used in a virtual world scenario.

Both radar-echo phase and magnitude must be modelled to allow the e�ects of glint

to be determined. The model must be operated in a scenario where the full 4�

steradians may be observed.

Table 1.1 shows the results of a decision analysis process. The techniques are

scored against the requirements with

0 { Bad

1 { Average

2 { Good.

The results are summarised in table 1.2.

Requirement

Technique Speed Fidelity Resolution Correlation Storage Total

Real Data 2 2 1 2 0 7

Scatterer Model 2 2 2 2 1 9

Statistical Model 2 0 2 0 2 6

Structural Model 1 2 2 2 1 8

Table 1.1: Decision analysis matrix for establishing best technique

Rank Technique Total Score

1 Scatterer Model 9

2 Structural Model 8

3 Real Data 7

4 Statistical Model 6

Table 1.2: Summary of decision analysis matrix results (table 1.1)

Of the di�erent methods available for generating a synthetic radar cross section,

the most practical appears to be the use of point scatterer models. Point scatterer

models allow the radar cross section to be calculated quickly for any angle and any

frequency. Any correlations between cross section and motion are inherent in the

model. Complex cross section patterns may be represented easily with a moderate

number of scatterers. Point scatterer models allow the e�ective resolution of the data

to be increased by interpolating between measured sample points. The interpolation

is non-linear and is related to the arrangement of the scatterers. The interpolated

data therefore appear as a realistic radar cross section pattern.

If point scatterer models are used, they have to be generated from some known

radar cross section data �rst. These data may be measured from a real target or

could be synthetic data generated from a CAD surface model. There are two main

requirements for the generation method:
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1. Coverage { The point scatterer models need to give 4� steradian coverage

for e�ective simulations.

2. Fidelity

The four existing methods below have been found for extracting point scatterer

models from radar cross section data.

1. Dominant Feature Analysis { This technique uses detailed target models to

identify the major scattering centres, such as corner re
ectors and 
at surfaces

etc.. Three-dimensional models are generated but the radar cross section is

only an approximation of the true radar cross section [23].

2. ISAR { Scatterer coordinates and amplitudes may be found directly from

ISAR images. High �delity models may be generated in both two and three

dimensions from 2D/3D data [41, 42, 43, 44, 45, 46]

3. Sinogram { The range pro�les of the target for an angle of revolution are laid

side-by-side to generate the sinogram. Scatterers appear to create sinusoidal

patterns in the sinogram that are related to the scatterers coordinates and

amplitude. High �delity models may be generated, but in practice, only in

two dimensions [17].

4. PTD/SBR { The Physical Theory of Di�raction / Shooting and Bouncing ray

technique allows point scatterer models to be generated directly from CAD

models of targets. The �delity of the models is restricted to the predictive

capability of the Physical Theory of Di�raction [47].

Table 1.3 shows the results of a decision analysis process. It is clear that the

best method for generating high �delity point scatterer models is from ISAR images

as this process allows both real and synthetic 3D data to be used. There are three

main requirements for the model extraction process:

Requirement

Technique Coverage Fidelity Total

Dominant Feature 2 1 3

ISAR 2 2 4

Sinogram 0 2 2

PTD/SBR 2 1 3

Table 1.3: Decision analysis matrix for establishing best model generation method

1. Coverage

2. Complexity { The method must be able to process satisfactorily images that

require large numbers of scatterers to achieve high �delity representations.
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3. Processing Speed { The extraction process should be as fast to execute as

possible.

The literature survey revealed the three existing approaches to extracting a model

from an ISAR image listed below.

1. Contour Processing { Contour lines are drawn on the image. Scatterers

appear as closed loops whose centres indicate the scatterers position. The

processing is slow and only really viable for two-dimensional images [42].

2. Least Squares /Prony's Method { Scatterer positions and amplitudes are

�tted using Non-Linear Least Squares or Prony's Method. These methods are

only suitable for very small numbers of scatterers [41, 43, 44, 45].

3. Iterative Peak Finding { The image is searched to �nd the highest peak. A

corresponding scatterer is generated and the peak is removed. The process is

repeated until all the peaks of interest have been found. The method requires

vast amounts of memory and is very slow for real data [46].

Table 1.4 shows the results of a decision analysis process.

Requirement

Technique Coverage Complexity Speed Total

Contour Processing 0 1 1 2

Least Squares /Prony 2 0 1 3

Iterative Peak Finding 2 2 0 4

Table 1.4: Decision analysis matrix for establishing best model extraction approach

Of the three methods, all of them are slow to process but the iterative peak

�nding approach is the most versatile, being able to process both two and three

dimensional data and cope with large numbers of scatterers. The process su�ers

from the following problems:

� Requires high resolution data to accurately locate scatterers.

� Heavy processing requirements.

� Large data storage overhead.

These problems need to be overcome in any proposed solution. At present, the

method is not practical with the computational resources available to this project.

1.4. Sequence of Work

The following areas of work were proposed.

1. Devise a method for automating model conversion and reducing the processing

requirements. The following should be addressed:
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1.1. Operate within the processing and memory restrictions of a desktop PC

1.2. Able to process low, medium or high resolution ISAR data

1.3. Minimise the number of scatterers used in the models.

2. Integrate point scatterer models into engagement scenario.

3. Establish level of model �delity required in simulations.

4. Investigate potential of using glint for detecting target manoeuvres.

1.5. Approach and Objectives

The relationship between the work, the thesis chapter, and the 
ow of data, is

illustrated graphically in �gure 1.1. In the �gure, boxes labelled as external relate

to details outside the scope of this thesis. The approach taken in addressing each of

the work items is as follows.

1.5.1. Item 1 { Automating model conversion

As described earlier in section 1.3.6, the model conversion problem is best tackled

using an iterative approach to identify scatterers from three-dimensional ISAR im-

ages. Bhalla and Ling's approach [46] does not satisfy the requirements though.

The requirements will be addressed as follows.

Item 1.1 { Operation with restricted resources

Bhalla and Ling's method identi�es the largest scatterer in the image and generates

a corresponding scatterer in the model. An approximation of the ISAR image of the

single scatterer is generated and then subtracted from the original data. To calculate

the image of the model, for an image of 640 pixels on each axis, 3 � (6402) =

1; 228; 800 Fast Fourier Transforms (FFT) need to be performed. On a typical

desktop PC, it would take around two hours to perform the transforms. To �nd

the brightest spot in the image, around a Gigabyte of data must be accessed. To

generate a model with 100 scatterers on a desktop PC using this method would take

over a week.

The approach taken to reduce the processing time is to try to identify multiple

scatterers in each iteration. A technique based on Genetic Algorithms (GA) [48]

is used that allows multiple scatterers to be identi�ed in each pass of the data.

Genetic algorithms are very e�ective when applied to optimisation problems that

are discrete, non-continuous or multi-modal ([49] gives review of genetic algorithm

applications in electro-magnetics).

For each iteration, one image is produced of all the scatterers found in the pass,

thus dramatically reducing the number of Fourier transforms required overall. An

added bene�t is the genetic algorithm only needs to access a fraction of the data to

identify the same number of scatterers as the existing method, thus improving the

speed further. The multi-species genetic algorithm will cut the processing time for

a 100-scatterer model to around 1 day.
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Item 1.2 { Image resolution independence

As the image resolution is reduced, locating the scatterers accurately becomes im-

possible. A second genetic algorithm is used to adjust the raw position information

in an attempt to minimise positioning errors. This �ne-tuning process enables high,

medium or low resolution data to be converted into models.

Item 1.3 { Model reduction

The �tting process can generate large numbers of scatterers for high �delity models.

If a model with a reduced level of �delity is satisfactory, some of the scatterers

may be discarded, resulting in a smaller model and therefore faster engagements. A

third evolutionary algorithm is used to perform a combinatorial optimisation of the

model.

Objectives for item 1

The two objectives for this section were as follows.

1. A small amount of low-resolution, two-dimensional, real data have been ob-

tained. The data cover a �20� azimuth sweep in 256 steps, looking nose-on to

the target. The azimuth sweep is repeated over 256 frequencies in the range 2:5

to 3GHz. A 64-sample azimuth section has been extracted from the data that

corresponds to approximately �5�. The objective is to �t a two-dimensional

model to this section of data. The radar cross section data for the azimuth

sweep at the centre frequency and the frequency data at 0� azimuth should �t

the model to an � = 0:9 Kolmogorov-Smirnov (Appendix D) con�dence level.

2. In the absence of real three-dimensional data, a synthetic model with �fty

scatterers will be generated, based on the scatterer locations identi�ed from

the real 2D data. This 50-point model will be used in subsequent trials as

a realistic 3D truth model. An ISAR image will be generated with 64-steps

on each axis and over an angular range of �1� in azimuth and elevation.

The objective is to �t a three-dimensional model to the data. The radar

cross section data for the azimuth and elevation sweep at the centre frequency

and the frequency data at 0� azimuth should �t the model to an � = 0:9

Kolmogorov-Smirnov con�dence level.

1.5.2. Item 2 { Integration into the engagement scenario

The target is tracked by the missile using a monopulse radar seeker-head (sec-

tion 4.3). Two di�erent variants of the seeker-head, phase-comparison and amplitude-

comparison, are used in current missiles. Models of the two types need to be evalu-

ated to determine which may be most suited to target manoeuvre detection.

It is hypothesised that the miss distance distribution of trials 
own from di�erent

directions against a stationary target should mainly be in
uenced by thermal noise,

seeker head type, and the target's radar cross section.
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Objectives for item 2

1. Evaluate the performance of a missile with each seeker against an ideal single

point target with constant radar cross section to verify that the missile miss

distance is near constant.

2. Repeat objective 1 against the 50-point truth target to generate miss-distance

distributions and therefore validate the hypothesis.

1.5.3. Item 3 { Establishing �delity

As the number of scatterers in the model directly in
uences the execution time for

each engagement, the fewer scatterers in the model, the faster the trial. Reducing

the number of scatterers in the model though may reduce the �delity of the radar

cross section representation.

The required radar cross section pattern can be �tted to a model with a smaller

number of scatterers, but with a residual error level that increases as the model size

is reduced. The way in which the missile is in
uenced by the reduction in �delity

must be investigated.

Objectives for item 3

1. Test the e�ect on the missile miss distance of reducing the number of scatterers

in the 50-point truth model.

2. Repeat on a 100-point randomly generated model to allow the e�ects of model

complexity and structure to be analysed.

3. Establish that the acceptance levels used in �tting the 2D and 3D ISAR data

are valid.

4. Produce a high-�delity reduced model for the target manoeuvre detection

trials.

1.5.4. Item 4 { Target manoeuvre detection using glint

Any indication of a manoeuvre before the target deviates from its current track

would be bene�cial to the missile guidance system. Currently, optical methods exist

for ground based tracking systems [2] but these methods require expensive extra

hardware. The majority of radar guided missiles use monopulse seeker techniques

and are therefore susceptible to glint. If manoeuvre information could be extracted

from the seeker bore-sight error signals, no extra sensors would be required. The

volume and cost of the seeker head could then be reduced.

Objectives for item 4

1. Investigate the noise on the monopulse bore-sight error signal.

2. Attempt to identify manoeuvres from glint errors. Use straight, level, 
ight

with a single bank turn manoeuvre.
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1.6. Original Work and Publications

1.6.1. Original Work

The following itemises the original work and ideas.

� Multi-Species Genetic Algorithm { Development of a novel multi-species

genetic algorithm to locate multiple scatterers in ISAR images. This algo-

rithm drastically reduces the processing overhead involved in existing model

conversion techniques. The processing uses a novel species' statistics idea to

increase execution speed (chapter 2).

� Genetic Algorithm Based Fine-Tuning Method { The �ne-tuning pro-

cess allows low and medium resolution ISAR images to be converted into point

scatterer models. The existing iterative technique is restricted to processing

only high resolution images. (chapter 2).

� Evolutionary Algorithm Based Model Optimisation { These techniques

allow large models created from real data to be used e�ciently in the simu-

lation environment. The e�ects of the model reduction on the �delity of the

representation can be traded against simulation speed by the user (chapter 3).

� Binary Space Partition Trees for Model Selection { This novel approach

gives a 
exible generic structure for combining small models to allow the radar

cross section coverage to be extended. Models derived from limited amounts of

real data can be combined easily with synthetic structures to give 4� steradian

coverage (chapter 4).

� Analysis of Model Size and Fidelity { The �delity analysis using syn-

thetic engagements provides models that are fast but su�ciently detailed to

deceive the missile. The e�ects of �delity have been established, allowing

model complexity to be reduced while maintaining realism (chapter 5).

� Target Manoeuvre Detection Using Glint { This novel approach to target

manoeuvre detection is cheap, very reliable, and utilises existing sensors. The

research has also provided new insights into the structure requirements for

realistic targets (chapter 6).

� Optimal Tuning of PBIL Algorithms { Two new parameters have been

introduced to the algorithm, allowing performance criteria to be derived. Op-

timality requirements have been established for one parameter and empirical

settings for two others have been proposed. The functions of all the parameters

are now known, allowing Population Based Incremental Learning optimisation

algorithms to be tuned easily (appendix E).

1.6.2. Publications

Author

Evan James Hughes, Transfer report: Radar cross section modelling.,

Royal Military College of Science, Cran�eld University, February 1997.
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Major Author

E. J. Hughes, M. Leyland, and B. A. White. \A multi-species ge-

netic algorithm applied to radar scattering centre identi�cation in three-

dimensions.", In GALESIA '97 Conference, pages 472{477, Glasgow,

UK, 1{4 September 1997. IEE Pub. No. 446. Won prize for best paper

at conference.

E. J. Hughes and M. Leyland. \Radar cross section model optimisation

using genetic algorithms.", In RADAR '97 Conference, Edinburgh, UK,

14{16 October 1997. IEE Pub. No. 449. Pages 458{462.

Joint Author

E.J. Hughes, P. Creaser, N.N. Jackson, M. Leyland, J.S. Dahele and

B.A. White. Radar Target Augmentation Study. Technical Report for

Agreement No. LSC/2004/115 with DRA, Malvern. November 1996

E.J.Hughes, P.Creaser. Engagement Model Software De�ning Speci�ca-

tion. Technical Report No. DAPS/EJH/17/97, Royal Military College

of Science, Cran�eld University, April 1998



2. Scatterer Location and Tuning

2.1. Introduction

This chapter covers the scatterer location and tuning phases of the model extraction

process. First, an overview of the complete extraction process is given. ISAR

theory is then covered in detail and then an introduction to genetic algorithms is

given. The multi-species genetic algorithm for scatterer identi�cation is described in

detail. The genetic algorithm used for �ne-tuning the scatterers is introduced, and

non-dominated ranking is covered. Finally the �tting-cycle termination method is

detailed.

2.2. Overview

Figure 2.1 shows a block diagram of the complete model extraction process. The

radar cross section data need to be measured over a small range of azimuth and

elevation angles and for a spread of frequencies. These data can then be used

to form a three-dimensional inverse synthetic aperture radar image. This image is

analogous to an optical hologram and allows the rough spatial locations of the major

scattering centres to be identi�ed [50]. A typical ISAR image is shown in �gure 2.4.

Target

RCS

Data

ISAR

Image

Generation

Scatterer

Identification

(GA-1)

Scatterer

Model

Point Model

Reduction

(GA-3)

Model

Good

?

Model

(GA-2)

Tuning

N

Y

Figure 2.1: Block diagram of complete model extraction process

The positions of the scatterers are located using the �rst of the genetic algo-

rithms. This genetic algorithm has a population split into multiple species and is

capable of identifying multiple scatterers in each run. A model is generated with

16
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scatterers located at the rough positions identi�ed from the image and the second

genetic algorithm applied. This algorithm is designed to �ne-tune the location of

the scatterers to improve the accuracy of the model.

The radar cross section of the model is checked against the required target pat-

tern. If the model does not �t, an ISAR image is generated of the model. This

image is subtracted from the original image, revealing the scattering centres that

have not yet been included. The identi�cation / �ne-tune cycle is repeated until the

radar cross section of the model matches the required data satisfactorily. At this

point, the model may have well in excess of one hundred scatterers.

Once satisfactory model elements have been generated when compared to the

ISAR image and radar cross section data, the model must be reduced to a conve-

nient size and �delity. The third genetic algorithm performs a combinatorial search

of di�erent numbers of scatterers and con�gurations in an attempt to reduce the

number of scatterers in the model whilst minimising the induced error. A Pareto-

optimal [51, Pages 197{201] set of evaluated solutions is generated, allowing the

designer to trade between �nal model size and the accuracy of the radar cross sec-

tion to the original data. Final models suitable for high �delity simulations often

contain around one hundred scatterers.

2.3. ISAR Images

2.3.1. Introduction

Conventional radar processes often see the 
uctuations in the radar cross section of a

target as noise and attempt to remove them via signal processing. Inverse Synthetic

Aperture Radar (ISAR) techniques exploit the variation of radar cross section with

relative target motion to generate spatial images of the radar target. Coherent

processing of the returned echoes allows the locations of the target scattering centres

to be resolved both in cross range (perpendicular to line-of-sight) and slant range

(parallel to line-of-sight).

The motion of the target relative to the radar is used to generate the diversity of

information required about the target. It is assumed that the targets have dimen-

sions that are small compared with the target range and images are obtained from

observations made over small segments of viewing angle. These assumptions simplify

the theoretical analysis. Data obtained under conditions that violate these assump-

tions can produce distorted images. In operational scenarios, long range imaging of

non-cooperative aircraft and ship targets is possible using ISAR techniques.

2.3.2. Basic ISAR Theory

If a rotating target is observed with a radar that has a high range-resolution, ns
complex samples per range pro�le for each of N range pro�les can be obtained

during time T , while the target rotates through angle ��. Each of the ns samples

form a single range cell. The size of these range cells determine the resolution of the

range information. The Doppler frequency shift produced by a scatterer for small

�� is proportional to the relative target angular rotation rate as well as cross range

distance between the scatterer and centre of target rotation [15]. One Doppler
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spectral line will exist for each Doppler resolved scatterer, the magnitude being

proportional to the re
ectivity of the resolved scatterer. The targets re
ectivity can

be mapped therefore in both slant range and cross range. The cross range scale

factor is dependent on the relative target angular rotation rate.

The orientation of the rotation axis relative to the radar Line-Of-Sight (LOS)

establishes the orientation of the image plane. This plane always lies so as to de�ne

the slant range as being parallel to the LOS and the cross range direction perpendic-

ular to both the line-of-sight and axis of rotation. Thus the best images are obtained

when the LOS and axis of rotation are perpendicular. If they are parallel, no two

dimensional images may be formed.

The relationship between a scatterer's position and the resulting Doppler fre-

quency is shown in �gure 2.2. If the target rotates at ! radians per second, a single

scatterer at cross range distance r then has instantaneous velocity !r towards the

radar.

ωr

ω

Radar

Target

r

Figure 2.2: Relationship between scatterer and Doppler frequency

Equation 2.1 details the Doppler frequency shift produced by rotation over a

small angle.

fD =
2

c
!rcf (2.1)

Where f is the centre frequency of the radar, c is the propagation velocity and rc
denotes cross-range.

If two scatterers are in the same slant range cell and are separated by a cross

range distance of �rc, then the received signals are separated by a frequency �fD
and therefore cross range separation may be de�ned as in equation 2.2

�rc =
c

2!f
�fD (2.2)

Doppler resolution may be related to the coherent integration time as �fD � 1
T
[15,

Page 278]. Cross range resolution for a small change in viewing angle, ��, occurring
during integration time T may be given by equation 2.3.

�rc =
c

2!Tf
=

1

2

�

!T
=

1

2

�

��

�����
�fD= 1

T

(2.3)
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A discrete Fourier transform may be used to convert the time-history samples from

the N range pro�les collected over time T into a Doppler spectrum.

The slant range time history may alternatively be obtained using stepped fre-

quency data. The target echo is measured at a series of discrete frequencies and the

Inverse Discrete Fourier Transform taken, yielding the time response and therefore

the synthetic range pro�le of the target. Range resolution can be de�ned as the

range increment between any two adjacent discrete range positions. A set of n fre-

quency steps spaced �f apart, produces n equally spaced range increments within

the unambiguous range length c
2�f

. Equation 2.4 details the slant range resolution

�rs.

�rs =
c

2n�f
(2.4)

If the angular segment over which the radar cross section data are recorded, ��,

is large (> 10� or so), the assumption that the Doppler frequency of a scatterer

remains constant begins to break down. The e�ect is to blur the resultant image.

If the segment is not too large, the blurring can be corrected by focusing the ISAR

image. The raw radar echo data are measured in polar form. If the measurement

angle segment is small, the data can be processed as if they are in a rectangular

coordinate system. For large angles, the focusing process converts the raw data from

a polar form to a true rectangular coordinate system [15, Page 311]. Figure 2.3

illustrates the re-sampling process. A uniformly spaced, rectangular grid is laid

over the polar data. The echo data at the new sample points are obtained by

interpolation. The spacing of the new grid does not necessarily have to be related

to the original sampling scheme. The ability to change the sample points allows

the �nal image resolution and scale to be altered, although signi�cant errors can be

introduced for major scale and resolution changes. The interpolation process will

introduce errors into the image though. These errors are often small compared to

errors arising from the assumption that the polar data can be treated as rectangular.

Collected Data
Re-Sampled Data

Figure 2.3: Re-sampling radar cross section data prior to imaging

The image is produced from stepped frequency data by �rst focusing and then

performing an Inverse Discrete Fourier Transform (IDFT) to convert the frequency
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data to synthetic range pro�les. If the range data are stored in the rows of a

matrix, the next step is to perform a Discrete Fourier Transform (DFT) on the

columns of the data to resolve the cross range Doppler information. The usual

windowing requirements for Discrete Fourier Transforms should be met to reduce

spectral spreading in the �nal image. Typically a raised cosine window is su�cient

and is shown in equation 2.5. In practice, the Fast Fourier Transform (FFT) is used

in the calculations.

W =
cos (�) + 1

2

�����
������

(2.5)

2.3.3. Summary

The e�ective scaling of ISAR images in cross-range (up{down, left{right) and slant

range (front{back) is determined by the sample step size and number of samples

in azimuth, elevation and frequency. Equations 2.6 and 2.7 show how to calculate

cross range and slant range resolution respectively.

rc =
c

2nc��f
(2.6)

wc = ncrc

rs =
c

2ns�f
(2.7)

ws = nsrs

where nc is the number of steps in cross range, ns is the number of steps in slant

range , �� is the angular step size in radians, �f is the frequency step in Hertz, c
is the speed of propagation in metres/sec., and f is the mean frequency in Hertz.

The cross range and slant range resolutions are denoted by rc and rs while the total
range extent are wc and ws respectively. All range measurements are in metres. Care
must be exercised in the choice of angular window (nc��) that the measurements

are taken over. A window greater than 10� will begin to cause a blurring at the

edges of the image. Focusing techniques can be used, reducing the e�ects of the

wider angular coverage, but more scatterers are eventually required to �t accurately

the radar cross section to the model. Image generation involves the application of

Fourier transforms to the radar cross section data and therefore su�ers from the

spectral spreading problems inherent in this process. The genetic algorithms do

not require the application of window shaping functions to reduce spreading e�ects.

The inherent square window leads to sharp peaks with long tails extending into the

image. The long tails aid the search abilities of the �rst genetic algorithm as they

help indicate the locations of the peaks.

It has been proposed that inverted windows that enhance the size of the tails

and make the main peak narrower may improve the genetic algorithm performance.

Trials of the inverted raised-cosine window shown in equation 2.8 were performed.

Five trials of each window were conducted and the number of peaks found in each

trial was recorded. Using the Mann-Whitney test of means at � = 0:05, no sig-

ni�cant di�erence was found in the ability of the genetic algorithm to identify the
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peaks.

W = 1� cos (�) + 1

2

�����
������

(2.8)

2.3.4. Example Image

Figure 2.4 shows a typical ISAR image. The image was generated from real data

over an azimuth sweep of �5:1� to 5:4� in 64 steps and for a frequency sweep of 2.5

to 3 GHz at 0� elevation in 256 steps. The data are un-focused and are subject to

the inherent square window of the FFT process. The image has a resolution of 0.3

metres per sample in both cross range and slant range. The shape of the aircraft is

clearly visible in the image. The engines and nose (upper part of image) are easily

distinguished. The tail �n (towards the bottom)and wing tips (left of image) are

less visible.
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Figure 2.4: ISAR image example
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2.4. Genetic Algorithms

Genetic Algorithms [48] are designed to mimic the natural selection process through

evolution and survival of the �ttest. A population of M independent individuals is

maintained by the algorithm, each individual representing a potential solution to

the problem. Each individual has one chromosome. The chromosome is the genetic

description of the solution and may be broken into n sections called genes. Each

gene represents a single parameter in the problem domain. Therefore, a problem

that has �ve unknowns for example, would require a chromosome with �ve genes to

describe it.

The three simple operations found in nature, natural selection, mating and mu-

tation are used to generate new chromosomes and therefore new potential solutions.

Each individual's chromosome is evaluated at every generation using an objective

function that is able to distinguish good solutions from bad ones and to score their

performance. With each new generation, some of the old individuals die to make

room for the new, improved o�spring. Over several generations, the majority of the

solutions represented by the individuals in the population will tend to lie around an

optimal solution for the given environment. The exact rate at which the population

converges to a single solution is determined by the nature of the problem and the

structure of the genetic algorithm.

When used to solve optimisation problems, genetic algorithms tend to search

areas spread across the entire optimisation surface before converging on a maxi-

mum or minimum depending on the problem. Thus, despite being very simple to

code, requiring no directional or derivative information from the objective function

and being capable of handling large numbers of parameters simultaneously, genetic

algorithms can achieve excellent results.

The method can be described by the following algorithm:

1. Create a population of M individuals, each having a chromosome with gene

values chosen at random.

2. Assess the performance of each individual.

3. Rank individuals with respect to performance and assign a Fitness Value de-

pendent on ranking.

4. Create a set of M parent individuals for breeding where the probability of

being included in the set is proportional to �tness. The �tness consideration

may lead to some individuals being chosen many times and others not at all.

5. Randomly pair parents and breed to form M o�spring.

6. Randomly mutate some of the genes in the o�spring chromosomes.

7. O�spring become new population, assess the performance of each individual.

8. Record best individual.

9. Repeat from step 3 for required number of generations.
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2.5. Location Process

Bhalla and Ling's iterative method [46] operates by �rst �nding the size and coordi-

nates of the brightest spot in the image. A scatterer is placed in the corresponding

position in the model. An ISAR image of this scatterer is produced and subtracted

from the original image to remove the corresponding bright spot. The process is

repeated until all the major bright spots have been removed.

The method works well but has one major drawback; it requires high resolution

data in order to locate accurately the centre of each scatterer. A typical three di-

mensional image of 640 pixels on each axis will require (640)3 elements and therefore

two Giga-bytes of storage space. Finding the location of the maximum value neces-

sitates searching the entire set of data for each scatterer that is resolved. Images

often require 100 or more scatterers for accurate representation and therefore the

equivalent of 200 GBytes of data must be retrieved from the storage media. On a

small system, the data access and transfer times are signi�cant. To remove each

scatterer, 3(6402) = 1; 228; 800 Fourier transforms are required to create the ISAR

image. For a model where 100 scatterers are identi�ed, the processing would take

longer than a week on a desktop PC. This is impractical.

A genetic algorithm may be used to locate multiple bright spots in one pass.

These bright spots can then be formed into a model, and the model's e�ects sub-

tracted from the original image as before. Further applications of the genetic algo-

rithm will locate any smaller points remaining. Generating an ISAR image of one

scatterer takes almost as long as generating an image of ten scatterers. Thus by pro-

cessing multiple points in each pass of the data, vast savings can be made in image

generation time. This multi-modal function approach can make model calculation

viable on a small system.

2.5.1. Multi-Modal Optimisation and Sharing

Most genetic algorithms use a single population of a single species. The algorithms

are designed so the solutions represented by the di�erent individuals converge on the

single optimum solution of the objective function. In multi-modal optimisation, the

genetic algorithm is designed to converge with multiple solutions, each corresponding

to a separate peak in the objective function.

There are a number of mechanisms that may be used to force a genetic algorithm

to exhibit multi-modal behaviour.

1. Iteration { Many independent runs of the genetic algorithm are performed

in an attempt to identify all the peaks. This method is very ine�cent as the

larger peaks will often be found many times [52, Page 176].

2. Sharing { The sharing system operates by modifying the objective value that

is seen by each individual. If a number of individuals all occupy the same peak

in the objective function they are made to share the objective value at that

point [53]. This simple concept is enough to allow multiple stable populations

to form.

3. Crowding { Crowding is a selective breeding technique where o�spring are
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inserted into the population by replacing individuals that are genetically sim-

ilar [54]. The process allows multiple stable populations to form.

4. Sequential Niching { The process operates by iterating the genetic algorithm

but maintains a record of the best solutions found. At each successive iteration

of the genetic algorithm, the peaks that correspond to the solutions found in

previous runs are suppressed. This method is essentially a sequential version

of the sharing process described earlier [55].

In order to identify multiple scatterers in each pass of the genetic algorithm, either

the sharing or crowding method must be used.

For the sharing process, a function that is related to the separation distance

between two individuals (genotypic or phenotypic space) is used to control the mod-

i�cation of the objective function. Equation 2.9 de�nes the sharing function used,

with d(�(i); �(j)) de�ned as the distance between the chromosomes �(i) and �(j),

s(i; j) is the sharing e�ect of i on individual j and �, � are factors for modifying

the function shape. When � = 1, this function produces a linear variation that

moves from unity at zero distance to 1 � � at a distance of � and zero thereafter.

If � 6= 1, the function has an exponential form. Using a value of � less than unity

has a similar e�ect to using high values of �, but without the processing overhead

of the exponential calculations.

s(i; j) =

(
1�

�
d(�(i);�(j))

�

��
� d � �

0 d > �
(2.9)

where d = d(�(i); �(j)) = j�(i)� �(j)j

For each individual, i, the distance is calculated from its chromosome to the

chromosome of every other individual, j, in a population of N individuals and the

values for each of the sharing functions are totalled (equation 2.10). The result is

used to derate the image value at the point de�ned by the chromosome of i, I(�(i))

yielding a new objective value O(i). Equation 2.11 shows the objective calculation.

S(i) =
NX
j=1

s(i; j) (2.10)

O(i) =
I(�(i))

S(i) (2.11)

These sharing functions work well but for the large and complex optimisation sur-

faces found in scattering centre identi�cation, large populations are required. Thus

the requirement for every individual to be compared to every other produces a sig-

ni�cant processing overhead. In an attempt to reduce the processing requirements,

the sharing function has been modi�ed to operate using multiple species rather than

individual members [56]. This process combines the niche forming properties of the

sharing process with the selective breeding of the crowding algorithm.

The position and spread of a species may be de�ned by the mean of the species

chromosomes and their standard deviation. Equations 2.12 and 2.13 de�ne the

position and spread respectively. Where nk is the number of individuals in a species
and �(i; k) denotes the chromosome of individual i of species k. If it is assumed that
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the spread of individuals around the mean position is roughly Gaussian, a sphere

with a two standard deviation radius from the mean will encompass the main bulk

of the population. Thus 2�k may be de�ned as representing the spatial distribution

of population k.

�k =
1

nk

nkX
i=1

�(i; k) (2.12)

�k
2 =

1

nk

nkX
i=1

j�(i; k)� �kj2

=
1

nk

nkX
i=1

d(�(i; k); �k)
2

(2.13)

Equation 2.14 de�nes the modi�ed sharing function, where �k is a sharing distance
that varies with the spread, �, of the species. The spread of the species is still limited

to a minimum distance of �. This sharing function is then applied to all Ns species,

except the members own, and the results summed (equation 2.15). The objective

cost for the individual is then derated by one plus the share value to account for the

individual itself and is shown in equation 2.16.

s(�(i; j); �k) =

8<
: 1�

�
d(�(i;j);�

k
)

�k

�2
� d��k

0 d>�k
(2.14)

where �k =

(
�k �k > �

� �k � �

S(�(i; j)) =
NsX
k=1

nk

2�k
s(�(i; j); �k)

�����
k 6=j

(2.15)

O(�(i; j)) =
I(�(i; j))

1 + S(�(i; j)) (2.16)

The sharing function de�ned in equation 2.14 is based on a squared law rather than

a linear function, ie. with reference to equation 2.9, � = 2. Individuals that are

close to the species centre are a�ected more than those further away. An increase

in calculation speed is gained by not requiring the square root of the magnitude of

the distance to be taken. Unlike the �xed shape individual sharing functions used

previously, the functions associated with each species are dynamic and vary with

the geographical motion of the individuals within the species.

The ratio of the number of individuals in a species (nk) to the specie's spread

(2�k) has been included as a factor in equation 2.10 to give equation 2.15. This ratio

makes the in
uence that each species has on other individuals change dynamically

with the specie's spread. Each species is now referred to by its mean position.

When a species population is widely dispersed (� � �), the function has little

e�ect on other individuals. As a specie's population converges (� ' �), the range

of the function decreases but its in
uence increases. This added in
uence forces

di�erent species to separate as their populations converge. A minimum distance, �,
for the spread of the function is used to prevent di�erent species from converging

too closely to one another. This minimum distance helps increase the diversity of

the geographical spread of the species.
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2.5.2. Algorithm Construction

A real valued chromosome with three parameters, or genes, has been used to de�ne

each individual. The parameters are de�ned as being the (x; y; z) coordinates of

a location in the three-dimensional ISAR image. The genotypic level allows the

parameters to have fractional components. The fractional component allows real-

valued mutations to be applied. The genes are rounded to the nearest integer to

obtain the phenotypic data for the picture element index. The raw objective value

is de�ned as the image intensity at the indexed point.

The genetic algorithm follows the usual format of ranking, selection, crossover,

mutation and evaluation but with each species being processed separately. The same

number of o�spring as parents are generated and a total replacement policy is used.

The total replacement policy helps to reduce the rate of convergence and allows the

species to relocate themselves to minimise problems caused by overcrowding.

The �tness value F (x) is assigned according to rank position px of individual x.

The individual with the lowest O(x) (least �t) being assigned a rank position of 1

and the best individual being assigned rank position M . Equation 2.17 details the

calculation of F (x).

F (x) =
2s(px � 1)

M � 1
+ (1� s)

�����
0<s�1

(2.17)

Where s is the selective pressure [52, Page 56] and may lie in the range 0 < s � 1.

The emphasis that is placed upon the selection process may be controlled by adjust-

ing s. A value of zero is never used as any bias between good and bad individuals

is prevented and therefore no natural selection occurs. A value of unity gives the

maximum selection where the chances of selecting the worst individual are near zero.

The e�ect of reducing the selective pressure is to slow the convergence of the genetic

algorithm. In this algorithm, a selective pressure of 0:8 is used. This value has

been selected empirically and allows the species' to search the entire image but still

converge satisfactorily.

Stochastic Universal Sampling [48, Page 12] is used to select M individuals from

the population, each individual having a probability of selection de�ned in equa-

tion 2.18.

Prob(x selected) =
F (x)PM
i=1 F (i)

(2.18)

The individuals selected are randomly shu�ed and then paired up for breeding.

Uniform Crossover [52, Page 88] is used to generate two new o�spring from each

pair of parents. This operator swaps individual gene-pairs between the parents

with a probability of 0:5. For example, if we take two parents, a and b, both
with chromosomes containing two genes, uniform crossover can be used to generate

two o�spring. The �rst o�spring may have its �rst gene from parent-b and its

second from parent-a. Due to the spectral spreading that occurs with the Fourier

transforms in the image generation, each peak has long tails that spread out in the

axis directions. Although a real-valued chromosome is used, the uniform crossover

is suited to searching the image as individuals often settle onto a tail emanating

from a peak. If the two parents are each lying on di�erent tails of the same peak,

after crossover, the o�spring may lie exactly on the peak. Other recombination
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techniques that create o�spring by combining genes proportionally, are unlikely to

score a direct hit on the peak.

Genes are mutated with a probability of 0.3. This probability will mutate, on

average, approximately one gene per chromosome. The range of the mutation is

governed by equation 2.19. This Non-Uniform mutation [52, Chapter 6] function is

unity initially and progresses to zero at the �nal generation and is used to modify

the maximum deviation from the current gene value, where G is the generation

number and Gm is the maximum number of generations. Initially, the gene can

mutate to any value within its range, but this range is reduced with time. The

range modi�er function forces the genetic algorithm to converge on a solution by

con�ning the o�spring of each subsequent generation to a diminishing region. In the

�nal stages of the algorithm, the mutation range is limited to a very small locality,

forcing the species to converge on the true local optimum. The function shape allows

the genetic algorithm to perform a thorough search in the early generations but still

retain the convergence properties of non-uniform mutation toward the end phase of

the algorithm. The use of a real valued chromosome in this algorithm is due to the

use of this speci�c non-uniform mutation operator. Figure 2.5 depicts the function

shape graphically.

R(G) = 1�
0
@1� cos

�
(G�1)

(Gm�1)
�
�

2

1
A

2

(2.19)
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Figure 2.5: Mutation range modi�er function

The objective function for the o�spring is calculated as detailed previously, based

on the statistics of the parent population. Policies other than total replacement have

been tried but appear to o�er little bene�t as the objective function is e�ectively

dynamic with the motion of the species. The use of dual chromosomes and a domi-

nance mechanism (diploidy) has been tried to improve the search process by allowing
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species to develop a memory of good peaks they have occupied in the past. The

e�ect was to slow the convergence of the algorithm but no improvements in the

results were noticed, probably due to the low number of generations used in the

algorithm.

The genetic algorithm is terminated after 50 generations and the best overall

individual of each species is recorded as a peak location. The small number of

generations combined with forced convergence has been chosen to give a consistent

execution time. As the algorithm is being applied in an iterative fashion, the re-

quirement is to identify any of the peaks in the image, rather than the highest set.

Therefore the algorithm's ability to identify the global peak in each run is sacri�ced

for speed.

Once the algorithm has terminated, duplicate peaks and any that are within one

spread distance (��) are removed. A range of species is used, each with a di�erent

population size. This range of species sizes introduces a slight bias into the algorithm

where the smaller species are able to move more rapidly than the larger species but

have a weaker hold on any peaks they �nd. The larger species move slowly but are

capable of evicting small species from peaks that are already colonised.

The individual parameters of genetic algorithms are notoriously di�cult to tune.

For parameters such as mutation rate and crossover rate, simple rule-of-thumb set-

tings are often su�cient. Even large variations in these parameters often produce

few noticeable changes in the performance of the algorithm. Typical tuning strate-

gies for the three basic parameters are:

1. Crossover rate { Increasing the crossover rate reduces the rate of algorithm

convergence in the early stages of the run. The chances of convergence on a

local optima are increased. Typically, a crossover rate of unity is used.

2. Mutation rate { Increasing the mutation rate increases the rate of conver-

gence in the latter generations of the algorithm. Increasing the mutation rate

improves the chances of escaping from local optima, but reduces the ability of

the algorithm to converge exactly on any optimum solution. A mutation rate

that will, on average, mutate one gene per chromosome is often chosen.

3. Selective pressure { Reducing the selective pressure slows the convergence

of the algorithm and therefore reduces the chances of premature convergence

on a local optimum. A selective pressure of unity is often used.

4. Population size { Increasing the population size increases the diversity of

genes in the population. The rate of algorithm convergence is reduced but it

is less likely to converge on a local optima.

In the multi-species algorithms, the extra parameters are tuned as follows:

1. Minimum spread distance (�) { This distance is related to the width of

a typical peak in the image. If � is too small, species may settle on the sides

of high peaks. If � is too large, small peaks that are very close to large peaks

may be missed.

2. Shaping Parameter (�) { This parameter determines how brutal the e�ect

of � is. A value for � near unity will allow large species to exist at a distance
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less than � from smaller species. Reducing � will make it more di�cult for

large species to displace smaller species that have already converged on a peak.

3. Number of species { The number of species determines the number of peaks

that can be identi�ed in each run. Increasing the number of species will reduce

the average number of individuals in each species. Smaller species are more

likely to converge on a local optima, rather than search for the highest peaks.

Experiments have shown that up to 25 species with population sizes ranging

from 15 through to 100 provide good results over a range of di�erent images.

Experiments using di�erent population sizes have yielded some interesting re-

sults. By applying a genetic algorithm a number of times to an image in order to

identify the highest peak, the probability of �nding the peak can be established. It

was noticed that as the population size was increased, the probability of �nding the

peak also increased. Trials with di�erent images indicated that the probability was

also related to the relative area that the peak occupied in the image, ie. the larger

the footprint of the peak appeared to be, the easier it was to �nd. This relationship

to area is quite intuitive as the larger the initial random population, the more chance

there is of generating an individual that lies within the footprint of the peak. It was

hypothesised that the probability of �nding the peak is related to the area of the

peak's footprint, relative to the total image area.

The population based incremental learning algorithm described in appendix E

was used in an attempt to prove this hypothesis as the algorithm is very simple and

has few parameters to tune. It has been established that for high values of learning

rate, the probability of identifying the peak, PH , follows a binomial distribution.

This probability is shown in equation 2.20, where p is the size of the population, PH
is the probability of identifying the peak, and P1 is the probability of identi�cation

for a population size of unity (impossible to do with PBIL, it is estimated using

equation 2.20).

PH = 1� (1� P1)
p (2.20)

Further experiments have shown that the probability P1 is related to the footprint

of the global peak. Doubling the area the peak covers appears to double P1. This

result allows the uncertainty that the best peak found is the global optima to be

quanti�ed approximately. The best result found will have an associated probability,

P1. Using equation 2.21, a population size may be calculated that should give a

single run of the algorithm a probability, PG, of hitting a global peak that has

approximately one tenth of the area of the current best peak.

p =
log(1� PG)

log(1� P1=10)
(2.21)

Thus if no other, better, solutions are found, it could be said that there is a proba-

bility, PG, that there are no other solutions to the problem up to a tenth of the size

of the best found.

Unfortunately, at low learning rates, P1 does not remain constant with respect to

population size. The relationship has not yet been identi�ed. The research has not

yet been applied to genetic algorithms but they should behave in a similar manner
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to PBIL. The work has, however, provided an insight into the operation of the PBIL

algorithm and allowed major enhancements to be made.

Comparing the multi-species genetic algorithm to existing approaches that search

for the highest peak, if we have an algorithm with 750 individuals and run it for 50

generations, it will require 37500 objective calculations. The algorithm can locate as

many peaks as there are species, although a 70% identi�cation rate is more realistic.

For an algorithm with 14 species, if it is applied 10 times to identify 100 scatterers in

a high resolution image, a total of 375,000 accesses are required to the image data.

The conventional iterative model conversion approach accesses nearly 560,000 times

as much image data and generates ten times as many ISAR images to achieve the

same model resolution.

2.6. Fine-Tuning Scatterer Locations

2.6.1. Introduction

With low-resolution images, the scatterer locations generated by the �rst genetic

algorithm may be a signi�cant distance away from the optimum positions. Even

with high resolution data, if two scatterers are very close, the image peak positions

may not be truly aligned with the actual scatterer location [57]. By �ne-tuning the

model, these errors can be reduced. The �ne-tuning process will ultimately result

in the model requiring fewer scatterers to match the target data and so reduce the

burden on the third genetic algorithm.

2.6.2. Tuning Process

The �rst stage in converting the scatterer image details into a point scatterer model

is to register the image with the model. The image registration is achieved by

placing a scatterer at the origin of the model and generating an ISAR image of it.

The highest point in the image will correspond to the scatterer in the model, giving

the image{model zero location, �1 resolution cell. A rough amplitude scaling can

be calculated from the brightness of the peak in the image. Knowing the true image

resolution from equations 2.6 and 2.7, the model position of a point that is a �xed

distance on each axis away from the centre is calculated. The distance chosen must

be related to the position of the centre point so that the peak should not fall outside

the image region. If it does lie outside, an aliased peak will be present, but at a

false location. This second peak allows the image scaling to be be veri�ed and any

scale inversions identi�ed. It is possible for increasing x in the model space to lead

to decreasing x in the image etc.. This indicates that the data ordering has been

reversed in some way and must be corrected. The image{model registration only

needs to be performed once at the beginning of the conversion process.

Once the zero location and scale have been veri�ed, the location of each identi�ed

scatterer in the image can be transformed directly into a point in the model, with an

accuracy of �1 resolution cell. If the images are high resolution, for example greater
than 512 samples in each axis, the resolution induced error will typically be of the

order of a few centimetres or so and therefore close enough for conversion purposes.

The amplitude scale factor derived from the zero registration should also be accurate
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enough for direct conversion. An image of the model can then be subtracted from

the original ISAR image to reveal the smaller scatterers that have not yet been

located.

If the image is of low to medium resolution, ie. 32 to 512 samples, the error in

the scatterer's location becomes progressively worse as the resolution decreases, and

may ultimately be a few metres. Experience has shown that the amplitude scaling in

these cases may be as much as 100% out. To cope with these images, the raw model

positions must be �ne-tuned in an attempt to reduce positional and amplitude errors.

Figure 2.6 demonstrates the e�ects of a small number of samples on the image of a

scatterer when the scatterer does not align with the sample position. When the peak

of the image coincides with the sample location, the indicated amplitude is accurate.

As the sample point is shifted left or right, the measurement error increases, with

the indicated peak height being less than the actual peak.

Shifted Left Aligned Shifted Right

Figure 2.6: E�ects of mis-alignment between scatterer and sample instant

The following genetic algorithm is designed to adjust the raw scatterer positions

to improve the match to the required image. It should be noted that as the image

resolution decreases, the work of this genetic algorithm increases and the load on

the �rst genetic algorithm for scatterer location is reduced. This shift in processing

load should be adjusted by the designer for each di�erent image type that is to be

processed.

To reduce processing overheads, instead of calculating and comparing full three-

dimensional images, three one-dimensional images are used [46]. These images are

formed by taking data from the three principle axes of the radar cross section pattern

and using a Fourier transform to convert the radar cross section data to range

information. Typically, if the radar cross section data in the region around the

centre of the azimuth, elevation and frequency bands are of most interest, the radar

cross section would be measured �rst at the mean azimuth and mean elevation

and over the full frequency sweep; then at the mean elevation and mean frequency

with a full azimuth sweep etc.. If we have a 64 � 64 � 64 sample image, for full

conversion, 12; 288 Fourier transforms are required. Only three are required if the

one-dimensional approach is used. This major reduction in the processing overhead

is o�set by reduction in the �delity of the error measurements. It has been observed

that the �ne-tune operation is not compromised by the use of a reduced set of data,

although if very low resolution data are used, the processing of the full image is not
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too severe and its use in comparisons may be justi�ed to increase the �ne-tuning

capabilities of the genetic algorithm.

If the tuning process is not perfect, position and amplitude errors in the model

will lead to errors in the image. As the model image is subtracted from the required

image, any peaks in the model that are smaller than they should be will leave a

positive residue peak in the image after subtraction. This smaller scatterer will

be identi�ed in subsequent passes and reduced further. This mode of operation

eventually leads to models with an excess of scatterers. If the scatterers in the

model are larger than they should be or in the wrong position, a negative result

is obtained in these areas of the image after the subtraction process. This error

cannot be corrected in subsequent passes of the algorithm and causes bright spots

in the ISAR image that are too large. The negative error is highly undesirable and

is a problem with any technique that operates by an iterative scatterer subtraction

process.

The problem is addressed in the genetic algorithm by calculating the amount of

overshoot (negative error) and undershoot (positive error) of the �t separately. A

multi-objective approach is used that allows the designer to trade between a slow

�tting process that minimises the undesirable overshoot errors but leads to larger

models, through to a less stringent �tting scheme that minimises undershoot and

therefore uses less scatterers, at the expense of ISAR image accuracy. Alternatively

a compromise can be drawn between the two objectives that attempts to minimise

the negative error problems without creating a large model.

2.6.3. Non-dominated Ranking

A Pareto Optimal Set of results [51, Pages 197{201] may be formed where no one

solution is better than any other in both objectives. These solutions are said to be

Non-Dominated as no one solution can be chosen in preference to the others based

on the two objectives alone. There exists a single Pareto optimal set of solutions to

the problem. At any intermediate stage of optimisation, a Pareto set of results will

have been identi�ed. This set may or may not be the optimal set.

A non-dominated ranking method [58] is used in the genetic algorithm to generate

and maintain a Pareto set of results. Conventional genetic algorithms often use a

ranking method where the calculated objective values are sorted and assigned a rank

that is dependent only upon their position in the list, rather than their objective

value. The ranking operation helps to prevent premature convergence of the genetic

algorithm. The non-dominated ranking system operates by �rst identifying the

non-dominated solutions in the population and assigning them a rank of one. These

solutions are removed from the population and the non-dominated solutions in the

remaining set of individuals are then identi�ed, this time assigning a rank of two etc..

The ranking process is continued until all of the individuals have been accounted for.

Once all the individuals have been classi�ed, a dummy value (1 in this algorithm)

is assigned to all the solutions with rank one. The sharing process detailed in

section 2.5.1 is applied to these individuals, reducing their assigned value if they have

near neighbours (on a chromosome level). The sharing process ensures that a spread

of solutions is obtained across the Pareto front. The minimum value assigned to the

level one solutions is identi�ed and then reduced slightly (by 1%). This reduced
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value is then used as the dummy value for the level two solutions and so on. The

resulting objectives are intended to be used with a maximisation strategy.

The conventional ranking and selection processes are then applied as normal to

the objective obtained by the non-dominated ranking and sharing operation. An

elitist strategy is developed that preserves an entire Pareto front of P solutions from

generation to generation. To maintain a working population of N individuals, the

Pareto set from the previous generation is concatenated with the working population

and then N o�spring are generated from the N + P parents. After evaluation, the

o�spring become the new working set of individuals. The new Pareto set is calculated

from the population of solutions that results from concatenating the new working set

of individuals and the old Pareto set, thus choosing the best from the new solutions

and old Pareto front. The number of solutions that comprise the Pareto front, P , is

dynamic. Kumar and Rockett [59] discuss procedures that may be used if assurances

are required that the true Pareto optimal set of solutions has been identi�ed.

2.6.4. Algorithm Construction

A real valued chromosome is used and is held in a matrix structure that has four

columns corresponding to [�x �y �z a] , where �x, �y and �z are o�sets

from the raw scatterer position and a is the amplitude. The chromosome matrix

has the same number of rows as the number of scatterers identi�ed in the scatterer

location algorithm. The positional o�sets are limited to �1:25 resolution steps and

the amplitude is allowed to range from zero to 50% larger than the largest identi�ed

scatterer. In the phenotypic space, the scatterers corresponding to each chromosome

are concatenated to the previously identi�ed model before the images are generated.

For an image resolution of 64 samples on each axis, the algorithm would be run with

typically 100 individuals and for 500 generations.

Equations 2.22 and 2.23 show the two objectives that are used in the �tting

process, where E(x; k), de�ned in equation 2.24, is the error between the required

image, I(k), at point k and the image of the model, M(x; k), for solution x; N is

the number of points in the image; O1(x) is objective one and is a measure of mean

squared overshoot; O2(x) is objective two and describes undershoot. The objectives

are both to be minimised to establish the Pareto front.

O1(x) =
1

N

NX
i=1

(
0 E(x; i) > 0

E(x; i)2 E(x; i) < 0
(2.22)

O2(x) =
1

N

NX
i=1

(
E(x; i)2 E(x; i) > 0

0 E(x; i) < 0
(2.23)

E(x; k) = I(k)�M(x; k)jk=1:::N (2.24)

The �tness function as de�ned in equation 2.17 is applied but with a selective

pressure of s=1. This selective pressure gives the maximum bias towards the most

�t solutions. Stochastic universal sampling is used to select N individuals from the

N + P set described previously. Uniform crossover is applied where parts of the

paired chromosomes are exchanged. A �xed mutation rate of 0.25 is applied along

with non-uniform mutation as described previously in section 2.5.2.

At the end of the algorithm, one solution is chosen from the Pareto set. Which

solution is chosen is determined by the design strategy that is being employed. A
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slow but accurate method will chose the solution where O1 is the smallest (least

overshoot) while a less stringent strategy will pick the solution that minimises O2

(least undershoot).

2.7. Fitting Cycle Termination

After each �ne tuning phase, the model is tested to establish if enough scatterers

have been identi�ed to allow the �tting cycle to end and the reduction phase to begin.

Scatterer amplitudes and phases are �tted using a Constrained Least Squares process

(appendix C) in an attempt to match the required radar cross section pattern.

The Kolmogorov{Smirnov statistical test (appendix D) is applied to establish the

accuracy of the model. This test gives a measure of statistical similarity that is

independent of the amount and mean amplitude of the radar cross section data used

in the comparisons. If the radar cross section of the model does not �t the required

data, an image is generated from the model and this image is subtracted from the

original image. This process removes the scatterers that have been identi�ed. The

new image is then passed back to the �rst genetic algorithm to identify a new set of

peaks.



3. Model Reduction

3.1. Introduction

The process of model �tting can yield models with large numbers of scatterers.

This large amount of model data can create extended simulation times. If it is

accepted that a measured or calculated radar cross section will never be a perfect

representation of the real target [28, 40], small degradations in data �delity are

acceptable. Therefore, if some of the scatterers in an n-point model are removed, it

should be possible to re-adjust the model to give an approximation to the desired

radar cross section. As the model is used thousands of times in a typical engagement,

any reduction in model size is bene�cial. This chapter �rst describes and discusses

the di�erent approaches to reducing the number of scatterers in the model. It then

proceeds to describe the methods using genetic algorithms and population based

incremental learning in detail. The chapter concludes with the results of applying

the complete extraction process to 2D and 3D ISAR data.

3.2. Methods

Four di�erent approaches have been investigated.

1. Exhaustive Search { For a small model with twenty scatterers, there are

220 = 1048576 possible combinations to search to �nd the optimum solution.

Finding the optimum is guaranteed, but an exhaustive search of all possible

model combinations is often impractical. Increasing the model by just one scat-

terer doubles the search space. Exhaustive searching of a twenty-point model

took two days of processing on a desktop PC. A �fty-point model would take

nearly six million years to search. The exhaustive search process is thorough

but extremely slow.

2. Iterative Method { The approach is to throw out the scatterer that has the

least e�ect at each iteration. The method is very fast but unlikely to choose

the best models as reduction progresses; the radar cross section is governed

by scatterer interactions [60, Page 38][61] and a small scatterer may have

little e�ect on its own but may be dominant when paired with another similar

scatterer. For very small models (� 5 scatterers), the iterative method will

produce satisfactory results.

3. Multi-objective Stochastic Optimisation { Stochastic combinatorial opti-

misation techniques such as genetic algorithms are used to �nd the best model

for a given number of scatterers. The algorithms are allowed to generate mod-

els of all sizes for evaluation but eventually converge on models of the correct

35
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size. Algorithms that track the current best models for all sizes may be used.

The method is relatively slow but does not su�er from the exhaustive searches

exponential increase in processing for increasing model size.

4. Encoder Function with Stochastic Optimisation { A function is used

that generates model patterns with the correct number of scatterers. This

function is used with a stochastic optimisation technique such as population

based incremental learning or genetic algorithms. The process is repeated for

each model size. The advantage with this technique is that processing time is

not wasted in generating models with an inappropriate number of scatterers.

In all the methods, the scatterer locations in the trial model are kept �xed,

and magnitudes and phases are �tted using the constrained least-squares method

(appendix C). The constraint value used is the norm of the original model that

is being reduced. The radar cross section pattern is �tted over a de�ned region

of optimisation. This region may be a narrow-angle azimuth or elevation sweep,

through to data measured from a set of random positions covering 4� steradians.

The cost performance of each trial model is calculated by �tting weightings to

the selected scatterers and then generating the N radar echo data samples for the

region of optimisation. The mean squared error of the radar echo from the trial

model compared with the original required radar echo is calculated by applying

equation 3.1, allowing the e�ects of the reduction to be monitored for the current

region of optimisation. Where r(x)i is the radar echo of model x at point i, gi is the

required radar echo at point i, and N is the number of data samples.

Oe(x) =
1

N

NX
i=1

jr(x)i � gij2 (3.1)

For large models, the time taken to calculate the new scatterer weightings will

be the dominant processing overhead. When the evolutionary algorithms are close

to convergence, they tend to repeatedly generate the same small set of solutions

at each generation. The speed of the evolutionary algorithm based methods may

be improved by storing past scatterer patterns and their associated objective costs.

These data may be maintained in a tree structure for fast retrieval (detailed in

section E.3).

Table 3.1 demonstrates the processing requirements of the di�erent reduction

methods. For very small models (� 5 scatterers), the iterative approach will provide

near-optimal results in the fastest time. The iterative method will not produce good

results for larger models, although it can be used to produce an approximate set

of results for seeding the genetic algorithm method. A model of �fteen scatterers

or less is best reduced using an exhaustive search as the stochastic techniques are

ine�cient at small model sizes. For models containing up to two hundred scatterers,

multi-objective genetic algorithms that can maintain a set of solutions are the most

useful. For models with more than two hundred scatterers, the encoder function

method may be used to generate a small subset of reduced models. The use of

encoder function alleviates the need for all the model sizes to be evaluated.
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Number of Calculations

Model Size Iterative Exhaustive GA/PBIL

n n(n+ 1)=2 2n {

5 15 32 � 2; 000

15 120 32768 � 40; 000

50 1275 1:3� 1015 � 50; 000

Table 3.1: Comparison of di�erent reduction methods

3.3. Reduction Using a Multi-objective Genetic Algorithm

A n-bit chromosome has been used to de�ne the model structure, where n is the

number of scatterers in the model. Each bit corresponds to a scatterer. If a bit

is `1', the corresponding scatterer is present in the model, if it is `0', the scatterer

is omitted. The number of active scatterers in the model is calculated using equa-

tion 3.2, where �(x)i is gene i in the chromosome of individual x. This number is

used along with the radar echo error cost in equation 3.1 to generate a Pareto set

of results where model size is traded against reproduction accuracy.

Os(x) =
nX
i=1

�(x)i (3.2)

The non-dominated ranking methods described in section 2.6.3 are used to maintain

the Pareto population. A selective pressure of s=1 is used. Multi-point crossover

[48, Page 13] is used to generate two new o�spring from each pair of parents with a

crossover rate of 0.8. The crossover rate value has been determined empirically to

give good performance for a range of model sizes.

The genetic algorithm is terminated after 500 generations and the best overall

individual is recorded as the solution. A population of 100 individuals has been

used to reduce a 50 point model, therefore giving 50,000 objective calculations to

generate a Pareto set of results.

3.4. Reduction Using Encoder Function and PBIL

The encoder function is designed to generate a series of models that all have the same

number of scatterers. A recursive algorithm has been developed that allows scatterer

patterns to be generated quickly. Using the encoder function, the optimisation

algorithm optimises a pattern description rather than the model structure itself.

For example, if we take a source model with six scatterers and we wish to �nd a

model with three scatterers, there are twenty model combinations that have exactly

three scatterers active. In the genetic algorithm approach described previously,

the chromosome would contain six bits and would describe the model structure

directly. Six bits give 26 = 64 possible models, of various sizes, to search. With the

encoder function, the chromosome would describe a pattern number in the range

1 � p � 20. The pattern number would be converted to a unique model description

that contained exactly three scatterers. Thus the optimisation surface is one third
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of the size. The number of possible patterns is given by equation 3.3, where the

original model size is denoted by n, and the required number of scatterers by r.

No. of possible patterns,

 
n

r

!
=

n!

r!(n� r)!
(3.3)

The algorithm functions by creating a default model description with all the set

bits to the left and then adjusting the position of the rightmost set bit. As the

rightmost bit is moved to the right, the remaining pattern to the left can be treated

as a smaller sub-string. The number of combinations of the bits in the sub-string

may be calculated using equation 3.3. A running total of generated model patterns

is maintained. This total is continuously compared to the required pattern number.

Each sub-string is evaluated to determine if the required pattern lies within it. If

it does, the sub-string is processed, else the number of patterns in the sub-string is

added to the running total and the sub-string skipped. If the substring is skipped,

the rightmost bit of the current pattern is moved again to the right and the new

sub-string to the left of the bit is processed. The patterns are processed recursively

until the running total matches the required pattern number.

For example, if we have a six scatterer model (n = 6), and we require a model

with three scatterers (r = 3) that corresponds to pattern number nine (p = 9)

(where 1 � p �
 
n
r

!
), we begin by setting up the default model pattern shown

below. The initial model pattern starts with r set bits and (n�r) zeros, all the set
bits to the left and the zeros to the right.

1 1 1 0 0 0| {z }
n=6;r=3

There is only one combination of the two bits to the left of the rightmost set bit.

The total number of patterns expressed, T , is one (T = 1). The total is less than p
so the pattern is skipped and the rightmost set bit is shifted to the right.

1 1 1 0 0 0| {z }
n=6;r=3

�! 1 1 0| {z }
n=3;r=2

1 0 0

The sub-string created to the left of the rightmost set bit has

 
3

2

!
= 3 combinations.

The number of combinations would make the running total T = 4. The total is

less than the required pattern number p = 9, so the sub-string is skipped and the

rightmost set bit is shifted again. The running total is updated to T = 4.

1 1 0 1 0 0 �! 1 1 0 0| {z }
n=4;r=2

1 0

The sub-string created has

 
4

2

!
= 6 combinations. Skipping the sub-string would

make the running total T = 10. As the required pattern number, p = 9, is less than

T = 10, the sub-string should be evaluated. The running total is kept at T = 4.

There is only one combination of the one bit to the left of the rightmost set

bit of the sub-string. This pattern will make T = 5. The total is less than the
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required pattern p = 9 and so the pattern is skipped and the rightmost set bit of

the sub-string shifted.

1 1 0 0 1 0 �! 1 0|{z}
n=2;r=1

1 0 1 0

Here T = 5 and there are

 
2

1

!
= 2 combinations. The pattern is not in this interval

so the rightmost set bit of the sub-string is moved and T is updated to T = 7.

1 0 1 0 1 0 �! 1 0 0| {z }
n=3;r=1

1 1 0

Here the current total number of patterns skipped is T = 7 and there are

 
3

1

!
= 3

combinations of the sub-string. The required pattern, p = 9, lies in this interval.

As r = 1, ie. only one bit left, the bit may be positioned directly, giving the �nal

pattern for p = 9.

0 1 0 1 1 0

Using the encoder function, all the models generated will have the same number of

bits.

In the model reduction algorithm, the encoder function is used to convert each

trial solution from a genotypic pattern number to a phenotypic model representa-

tion. Weightings are �tted to the scatterers in the trial model using the constrained

least squares technique. The radar cross section pattern and the cost function, equa-

tion 3.1, are then evaluated for the trial solution. Care must be taken to ensure that

the calculation of the number of combinations (equation 3.3) can be held to full

precision in the internal representation of the computer. The maximum number of

combinations occurs at r = n=2. The machines precision may limit the maximum

model size unless precautions are taken to handle the large numbers properly.

Population Based Incremental Learning (appendix E) may be used to �nd the

optimum pattern number. The algorithm is simple but very powerful and requires

much less tuning than genetic algorithms. The algorithm operates by using the best

pattern from a population of trial solutions to update a prototype vector , from which

the next population of trial solutions is generated. The prototype vector has the

same number of elements as there are bits in the genotypic representation. Each

element represents the probability of generating a `1' at that bit position when the

next population is generated. The elements of the prototype vector all begin at a

value of 0:5 and are increased or decreased depending on whether the corresponding

bit in the best solution was `1' or `0'. The algorithm terminates when all the elements

of the prototype vector have converged to a level near zero or one.

Two main parameters are used to control the algorithm. The �rst, learning rate,

lies in the range zero to one and determines the �nal accuracy of the solution. The

lower the learning rate, the less likely it is that the algorithm will converge on a

local optimum. With high learning rates, the algorithm will be less likely to do a

comprehensive search of the optimisation surface. Low learning rates take far more

function evaluations before convergence than high learning rates. Typical learning

rates lie in the range 0:1 � l � 0:4.
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The second, and most important parameter, is population size. Population size

determines the probability that the algorithm will �nd the global optimum. Increas-

ing the population size will increase the chances of �nding the optimum solution,

though it will also increase the number of function evaluations required.

Trials for a small model have demonstrated that for a learning rate of 0:25 and

a population size of twenty, the optimum combination of 15 scatterers out of a

twenty scatterer model can be found with a hit rate of approximately 70% (average

of 10 trials). An average of 1276 function evaluations were used. There are 15; 504

possible patterns, therefore the method is approximately 12 times faster than the

exhaustive search in this experiment.

3.5. Model Extraction Results

3.5.1. Introduction

To satisfy the objectives detailed in section 1.5.1, two example trials are presented.

The �rst trial was run on measured two-dimensional data and the second on a

simulated three-dimensional image. The strategy used for �ne-tuning in both trials

was to try to �nd an average solution. The particular solution chosen is the one

that minimises the sum of the normalised objective terms. For each objective,

the minimum and maximum values are found from those individuals in the Pareto

set. These limiting values are used to normalise the objective values to lie in the

range zero to one. The normalised values are then summed for each individual.

The individual which has the lowest sum is chosen. The non-dominated ranking

genetic algorithm was used for both reduction phases. A limit of 300 scatterers

was imposed in both trials. In both cases, the radar cross section data used in the

�tting process were derived from the same source as the 1D ISAR images described

previously in section 2.6.2. These azimuth, elevation (3D only) and frequency traces

are concatenated to form a single pattern to match.

3.5.2. Two Dimensional Image

The two-dimensional data were measured from a real target at zero elevation and

with the image conditions speci�ed in table 3.2, where range resolution and total

range are in metres. The results were obtained with the genetic algorithms operating

under the conditions shown in table 3.3.

Range Res. Total Steps Sweep Range

Slant 0.2986m 76.44m 256 2.5GHz : 3GHz

Cross 0.2963m 18.96m 64 �5:1� : 5:4�

Table 3.2: Conditions for ISAR image generation (2D)

The �rst �tting stage comprising GA-1 and GA-2 required 38 iterations to locate

174 scatterers with radar cross section K{S signi�cance of � = 0:9. Figure 3.1 shows
the locations of the scatterers and �gure 3.2 shows the original ISAR image. It
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Parameter GA-1 GA-2 GA-3

Maximum Generations 50 100 300

Total No. Individuals 100 20 25

No. of Species 7 1 1

Selective Pressure 0.8 1.0 1.0

Crossover Rate 1.0 1.0 0.8

Mutation Rate 0.3 0.25 0:5=n

Non-uniform Mutation yes yes no

Minimum Share dist., � 3 10 1

Share Shaping, � 0.5 1.0 1.0

Table 3.3: Operating conditions for genetic algorithms (2D)
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Figure 3.1: Scatterer locations (2D)
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Figure 3.2: Original ISAR image (2D)
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is quite apparent that the scatterer locations follow closely the form of the ISAR

image. The image is presented in its full form with the area of interest con�ned to

the lower half. The image scale and positioning is determined by the original target

con�guration and angle and frequency sweeps used to collect the data. As Fourier

transforms are used to create the image from the cross section data, cropping the

set of data will only alter the resolution of the image. The targets spatial extent

and relative location in the image will remain unchanged.

The third genetic algorithm was then used to generate a set of smaller models.

Figure 3.3 shows the set produced after 300 generations of GA-3. The cost function
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Figure 3.3: Set of reduced models (2D)

used is as de�ned in equation 3.1. Although the cost function is a good means of

quantifying the error between the model and the required radar cross section, it is

di�cult to gauge the optimum model size to use. Figure 3.4 shows the the results

of the K{S statistic when applied to the reduction set. It is clear that the best

identi�ed model has 128 scatterers as the � = 0:9 signi�cance level is maintained.

Allowing GA-3 to run for more generations would eventually provide a smoother

K{S curve but may not improve on the model size. The option to terminate the

algorithm early is left to the designer.
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Figure 3.4: K{S signi�cance of reduced models (2D)
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Figure 3.5 shows the scatterer locations in the reduced model. The radar cross

section of the model (solid) compared to the required cross section (dashed) is shown

in �gure 3.6. The ISAR image of the model is shown in �gure 3.7.
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Figure 3.5: Scatterer locations of reduced model (2D)

Thus, despite having a resolution of approximately 30 centimetres, models can

be generated that have a reasonable number of scatterers and still approximate the

targets radar cross section.

3.5.3. Three-Dimensional Image

The three-dimensional test data were generated from a semi-random model con-

sisting of �fty scatterers based on the scatterer locations of the model identi�ed

in section 3.5.2. This model is de�ned as the �fty-point truth model and is de-

scribed in appendix B. The image was generated using the conditions speci�ed in

table 3.4, where range resolution and total range are in metres. The following results

were obtained with the genetic algorithms operating under the conditions shown in

table 3.5.

The �rst �tting cycle required 24 iterations to identify 173 scatterers that gave

a �tted radar cross section to a K{S signi�cance level of � = 0:9. The third genetic
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Figure 3.6: Radar cross section of reduced model (2D)

Range Res. Total Steps Sweep Range

Slant 0.3845 24.61 64 10.8 : 11.2 GHz

Cross, Az 0.3906 25.00 64 �1� : 1�
Cross, El 0.3906 25.00 64 �1� : 1�

Table 3.4: Conditions for ISAR image generation (3D)
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Figure 3.7: ISAR image of reduced model (2D)

Parameter GA-1 GA-2 GA-3

Maximum Generations 50 500 500

Total No. Individuals 750 100 150

No. of Species 10 1 1

Selective Pressure 0.8 1.0 1.0

Crossover Rate 1.0 1.0 0.8

Mutation Rate 0.3 0.25 0:5=n

Non-uniform Mutation yes yes no

Minimum Share dist., � 3 10 1

Share Shaping, � 0.5 1.0 1.0

Table 3.5: Operating conditions for genetic algorithms (3D)
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algorithm was then applied to obtain a set of reduced models. Figure 3.8 shows the

set produced after 500 generations of GA-3. Figure 3.9 shows the the results of the

K{S statistic when applied to the reduction set. It is clear that the best identi�ed
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Figure 3.8: Set of reduced models (3D)

model has 88 scatterers as this model gives an acceptable � = 0:9 signi�cance level.

Again it is up to the designer to decide how long the reduction algorithm should be

run for. The smallest model of suitable �delity should always be used to minimise

the engagement simulation times. Figure 3.10 shows the scatterer locations in the

reduced model. The radar cross section of the model (solid) compared to the required

cross section (dashed) is shown in Figure 3.11.

3.6. Conclusions

Attempts to solve this model identi�cation problem with one large algorithm have

proved fruitless. This lack of success suggests that sometimes the application of

many small genetic algorithms may be preferable to using one large and complex one.

The multiple algorithm approach is robust and will provide repeatedly a solution

to the problem; even though some of the algorithms are forced to converge, thereby
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Figure 3.9: K{S signi�cance of reduced models (3D)
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Figure 3.10: Scatterer locations of reduced model (3D)



CHAPTER 3. MODEL REDUCTION 51

0 20 40 60 80 100 120 140 160 180 200
25

30

35

40

45

50

55

Sample Number

R
ad

ar
 C

ro
ss

 S
ec

tio
n,

 d
B

m
²

Radar cross section of 88 point model compared with original data

Figure 3.11: Radar cross section of reduced model (3D)
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limiting their potential. Forced conversion gives more uniform results with respect

to job execution times.

The �tting process is not exceptionally fast, especially on a small system. It

does, though, allow results to be obtained that would otherwise not be achievable.

When large problems are being tackled, there is no requirement for all the data to

be rapidly accessible or even all stored on the same machine. The ability of the

algorithms to operate on low and medium resolution data is a signi�cant advantage

over existing model extraction techniques.



4. Model Integration

4.1. Introduction

This chapter covers the integration of the point scatterer and seeker models into

the engagement scenario. The construction of point scatterer models is described

�rst. Monopulse principles and target glint are introduced and the seeker models

de�ned. The engagement model and missile operation are covered and then miss

distance and trial conditions are discussed. Finally, the results of the proving trials

are presented.

4.2. Point Scatterer Models

4.2.1. Introduction

The radar cross section of a basic point scatterer model at wavelength � may be

de�ned as shown in equation 4.1.

�T =

�����
nX
k=1

p
�k e

j

�
4�d

k

�

������
2

(4.1)

The total radar cross section of the target, �T , is de�ned as the square modulus

of the coherent sum of the echos from the n scatterers, each scatterer with its own

radar cross section, �k and at a distance dk from the observation point [15, Page 23].

The sum of the echos is a complex quantity with units of volts. The radar cross

section is a scalar with units of square metres.

For high �delity representation, many scatterer models are created, each one

being valid for some small solid angle segment. The models are combined using a

Binary Space Partition Tree structure [62, Pages 675{680][63] allowing the correct

point scatterer model to be retrieved rapidly for any aspect angle. The structure

allows the models generated for small aspect angles and frequency ranges to be

combined to cover a larger region of interest. Azimuth and elevation are normally

the main decision variables used to generate the tree but models that vary with

frequency, range and polarisation for example, can be easily incorporated. Point

scatterer models that do not all have the same coverage angle may be incorporated

into the tree structure.

4.2.2. Binary Space Partition Trees

Space partition trees are designed to split an object into its component parts in a

manner that makes them easily retrievable. If an object is split into N components,

on average log2(N) tests must be performed to establish the correct component part

53
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to be used. For example, if an object has 1000 component parts, an average of just

under 10 tests must be performed. If we have the example object space shown in

�gure 4.1, the components 1 , 2 and 3 can be separated by the two lines a and b.

The test procedure will be to determine whether the viewing position lies either to

the front or reverse side of the partitioning line under consideration (arrows on �gure

indicate front of line). Although �gure 4.1 shows the partitioning of a two dimen-

sional space, the binary space partition tree technique will extend to n-dimensional

space, where the sub-spaces are divided by a structure of n�1 dimensions. There-

fore a three dimensional world will be partitioned by two dimensional structures,

ie. planes.

The tree is constructed by recursively splitting the model into sub-spaces using

partition lines de�ned by the junctions between the models. Components which lie

on the front side of the partitioning line are placed in the left branch of the tree. The

components in the remaining sub-space are placed in the right branch. Figure 4.2

shows the complete tree for the components in �gure 4.1.

In a typical model, azimuth can be de�ned as running from �180� to +180� and
elevation from �90� to +90�. We may then have a partitioning line de�ned as being,

say, 5� in azimuth. If the front side of the line is de�ned as being increasing angle,

the models may be split about this line forming the �rst division of the tree. Each

branch is then further sub-divided until there is only a single model at each node.

During run-time, the �rst test made will be to check if the missile position relative

to the target is greater than 5�. If it is, the left branch of the tree is traversed, else

traverse the right side.

Care must be exercised when generating the models to pay particular attention

to matching the radar cross section pattern at the edge of the model. If the edges of

the models di�er wildly where they overlap, discontinuities may appear in the data.

Observations have shown that these discontinuities will often appear as small glint

spikes in the engagement. ISAR images are unlikely to be a�ected noticeably by

this problem.

Figure 4.1: Partitioned model
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Figure 4.2: BSP Tree for �gure 4.1

4.3. Monopulse Seeker Models

4.3.1. Introduction

Target tracking is not a simple problem. Many di�erent methods have been devised

to locate and track a target through space. In tracking radars, the antenna-beam

axis, or bore-sight, is kept aligned with the target direction. If the target deviates

from the bore-sight, or the antenna moves away, an error signal is generated whose

magnitude is roughly proportional to the amount of deviation, and whose sign indi-

cates the direction of the error. The error signal is then used to drive the antenna

back towards the target.

The Monopulse technique generates error signals for each active radar burst, or

will passively track a signal source. This passive mode of operation renders the

monopulse seeker impervious to simple jamming techniques. The missile systems

under consideration in this thesis are designed to use monopulse seekers.

Monopulse radars can be broadly classi�ed as either amplitude comparison or

phase comparison. Amplitude comparison involves comparing the received signal

strength from four simultaneously generated squinted beams. The phase of the

signals from each of the beams will ideally be the same. The angular error is formed

by dividing the di�erence between a pair of beams by the sum of all the beams.

Figure 4.3 shows a planar representation of two of the beams.

Phase comparison monopulse uses four overlapping beams that each have a

slightly di�erent phase centre, therefore each beam ideally receives signals of the

same amplitude but di�ering in phase. The phase di�erence is then used to gener-

ate the bore-sight error.

In practice, for amplitude comparison, if the four antennas are arranged as

3 1

4 2

and �n indicates the appropriate echo voltage, then equation 4.2 details the horizon-

tal and vertical di�erence signals.

dH = (�3 + �4)� (�1 + �2) Horizontal Di�erence

dV = (�1 + �3)� (�2 + �4) Vertical Di�erence
(4.2)
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Figure 4.3: Monopulse beam patterns

The underlying principle behind phase-comparison monopulse tracking is based

on detecting the incidence angle of the received phase front. If it is assumed that

the target is a single-point, isotropic re
ector, the normal to the received phase

front local to the monopulse receiver will always point at the centre of the target.

Di�erentiating the observed phase front will give the normal to the phase front and

thus the target direction can be derived. Figure 4.4 illustrates the location process

graphically.

Figure 4.4: Locating target by observing phase front

4.3.2. Glint and Bore-Sight Error

The perfect target is a single isotropic scatterer. If the target is more complex, ie.,

two or more scattering centres, the phase front may not be spherical and may have

discontinuities and variations. These variations are due to the interference of the

wavefronts. The Glint Distance is the apparent shift of the target position due to the
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normal to the phase front not being directed towards the target centre. Figure 4.5

shows the glint distance, x, graphically.

v
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r r
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Figure 4.5: Graphical representation of glint distance

If we have a phase comparison monopulse seeker, with the two radar heads

separated by a distance l as shown in �gure 4.5, the phase di�erence �� observed in

the radar echo may be related to a physical o�set distance v by equation 4.3. One

wavelength, �, corresponds to a phase change of 2� radians.

v =
���

2�
(4.3)

The apparent target o�set, or Glint Distance, x, is described by the line-of-sight

o�set angle �� and related to the seeker head and engagement geometry as shown

by equation 4.4.

�� = tan�1
�
v

l

�
= tan�1

�
x

r

�
(4.4)

Therefore, the glint distance x may be calculated as in equation 4.5.

x =
rv

l
=
r���

2�l
(4.5)

If the observation angle � as shown in �gure 4.5 is small, then by the small

angle assumption that sin ( ) �  , the separation, l, may be described as l = r� 
and therefore the glint distance may be de�ned as being proportional to the rate of

change of phase with respect to view angle as shown in equation 4.6.

x =
�

2�

��

� 
' �

2�

d(�)

d 
(4.6)



CHAPTER 4. MODEL INTEGRATION 58

In a practical monopulse seeker head, extracting phase di�erence information

is di�cult due to system noise and receiver imbalances. In phase comparison

monopulse, it is assumed that the radar heads have near identical beam patterns

but di�erent phase centres. If we have two received complex signals, p and q, they

may be described as in equation 4.7.

p = mej�p

q = mej�q
(4.7)

where m is the signal magnitude and �p, �q are the two signal phases.

If the complex di�erence of the two signals is evaluated, and then divided by the

complex sum, a de�nition for bore-sight error, be, is obtained. This de�nition is

shown in equation 4.8. The result is purely imaginary and is governed solely by the

phase di�erence between channels p and q.

be =
mej�p �mej�q

mej�p +mej�q

=
(cos (�p)� cos (�q)) + j(sin (�p)� sin (�q))

(cos (�p) + cos (�q)) + j(sin (�p) + sin (�q))

=
2j(cos (�q) sin (�p)� cos (�p) sin (�q))

2 + 2(cos (�p) cos (�q) + sin (�p) sin (�q))

be =
j sin (�p � �q)

1 + cos (�p � �q)
(4.8)

Equation 4.9 shows a similar result derived for amplitude comparison monopulse

systems. Here the squinted beams have a common phase centre giving a purely real

bore-sight error.

be =
mp �mq

mp +mq

(4.9)

It is possible to create the di�erence and sum signals within the waveguide sec-

tion of the radar head and they are therefore less sensitive to imbalances and drift.

The seeker head is consequently lighter and consumes less power with the passive

processing of the signals [64, Pages 66{84]. Figure 4.6 shows bore-sight error signal

with respect to angle for a phase comparison monopulse seeker with a 12cm sepa-

ration between phase centres. The normal region of operation is usually along the

near-linear section of �2�. Figure 4.7 shows the bore-sight error signal with respect

to angle for an amplitude comparison monopulse seeker with a beam-width of 3�.

In practical systems, the assumptions that the phase front is linear across the

seeker head, that the signals from a phase comparison system have the same am-

plitude, and that amplitude comparison systems have a common phase centre, do

not often hold. The breakdown of the assumptions leads to bore-sight error signals

that are complex instead of being purely imaginary or purely real. The previous

calculations may be performed for a situation where the received signals are de�ned

as in equation 4.10
p = mpe

j�p

q = mqe
j�q (4.10)
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Figure 4.6: Bore-sight error signal with respect to angle (Ph. comp.)

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

er
ro

r 
si

gn
al

off boresight angle, degrees

boresight error signal for 3o beam width
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where mp, mq are the signal magnitude and �p, �q are the two signal

phases.

Equation 4.11 shows the actual bore-sight error signal.

d

s
=

m2
p �m2

q

m2
p +m2

q + 2mpmq cos (�p � �q)
+

j2mpmq sin (�p � �q)

m2
p +m2

q + 2mpmq cos (�p � �q)
(4.11)

Table 4.1 summarises the e�ects on the monopulse system.

Condition Real Part Imag. Part Comment

mp = mq 0
sin (�p��q)

1+cos (�p��q)

Ideal Phase

Comparison

�p = �q
mp�mq

mp+mq

0
Ideal Amplitude

Comparison

<
�
d
s

�
= 0 0

2mpmq sin (�p��q)

m2
p
+m2

q
+2mpmq cos (�p��q)

Actual Phase

Comparison

=
�
d
s

�
= 0

m2
p�m

2
q

m2
p
+m2

q
+2mpmq cos (�p��q)

0
Actual Amplitude

Comparison

Table 4.1: E�ect of non-ideal signals

Figure 4.8 shows typical phase-comparison bore-sight error plots with respect to

both angle and range. The plots are derived from a twenty point model, viewed

from broadside at 10GHz. Plot a shows the bore-sight error signal when the target

rotates by 2� at 1Km. The plot is sampled at 400-points per degree. Plot b is

the same rotation but at 100 metres. Figure 4.6 shows the relationship between

bore-sight error signal and bore-sight error angle. A bore-sight error signal of unity

is approximately equivalent to a 2� angle error, therefore, many of the glint spikes

represent signi�cant errors to the seeker head. The two plots demonstrate how the

glint errors become worse as range decreases.

Plot c shows the horizontal bore-sight error signal as range decreases. The plot

has a resolution of 1 metre and the target is stationary, with the missile approaching

at 90�, ie. broadside. The model used has a twenty metre nose-to-tail span. The �rst

glint spike is noticeable at a range of around 2Km for the horizontal bore-sight error.

It is clear that the glint becomes much worse in the last 500 metres. The increased

noise levels make guidance very di�cult in the engagement end-game. Plot d shows

the vertical bore-sight error signal as range decreases. The maximum vertical sep-

aration of target scatterers though is only four metres, leading to a reduced range

over which the glint 
uctuates and grows rapidly. These characteristics of glint are

detailed further in section 6.4.
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(d) Vertical Boresight Error WRT range, Broadside Encounter

Figure 4.8: Typical bore-sight error signals
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4.3.3. Seeker model Orientation

The seeker model takes target and missile positions and orientations along with

relevant point scatterer details and produces the horizontal and vertical seeker error

signals for the missile model. The target is de�ned as lying in target axes: the target

wings lie in the x{y plane with the fuselage parallel to the x axis and tail upward. A

right handed coordinate system is used with all objects being de�ned with the origin

at their centre and increasing x running from tail to nose. The choice of the object

centre is arbitrary but the object's geometric centre is often a convenient choice. If

the object is viewed head-on, increasing y will be from left to right. Increasing z is

de�ned as upward. The missile location and orientation is transformed from world

to target axes, thereby preserving their relative alignment and allowing the radar

cross section to be calculated without rotating the position of the target scatterers.

The rotations are performed using Unit Quaternions (see Appendix A) as they

allow a rotation about an arbitrary axis in space to be de�ned easily. The target and

missile position and orientation are passed as [ x y z ] coordinates and rotation

angles in a vector:

2
6664

Targetz }| {
[ x y z ]  T �T �T ;

Missilez }| {
[ x y z ]  M �M �M ;

Antennaz }| {
 A �A

3
7775

where  ; � and � are as shown in �gure 4.9.

z

x
y

φ
ψ

θ

D

Figure 4.9: Coordinate system

All [ x y z ] coordinates and target and missile orientations (  T ; �T ; �T and

 M ; �M ; �M) are de�ned relative to the world axes. Antenna orientation  A and �A
are de�ned relative to the missile.

A Unit Quaternion is �rst calculated that describes the orientation of the target

relative to the world axes and the position of the missile relative to the target is then

derived. Equation 4.12 details the process of converting the Euler angles de�ning

the orientation into a quaternion.
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~qa =

�
cos

�
�wt
2

�
; [1 0 0] sin

�
�wt
2

��

~qb =

�
cos

�
�wt
2

�
; [0 1 0] sin

�
�wt
2

��

~qc =

�
cos

�
 wt
2

�
; [0 0 1] sin

�
 wt
2

��

~qt = ~qc~qb~qa

~qt = ~qt=j~qtj

Dtm = ~q�t [0 ; (Dwm �Dwt)]~qt

(4.12)

Equation 4.13 details the calculations to derive a unit quaternion that describes

the transformation from seeker axes to target axes. Unit quaternions are used as

they allow composite rotations to be easily normalised, ensuring orthonormality.

~q1 =

�
cos

�
�ma
2

�
; [0 1 0] sin

�
�ma
2

��

~q2 =

�
cos

�
 ma

2

�
; [0 0 1] sin

�
 ma

2

��

~q3 =

�
cos

�
�wm
2

�
; [1 0 0] sin

�
�wm
2

��

~q4 =

�
cos

�
�wm
2

�
; [0 1 0] sin

�
�wm
2

��

~q5 =

�
cos

�
 wm
2

�
; [0 0 1] sin

�
 wm
2

��

~qm = ~q�t ~q5~q4~q3~q2~q1

~qm = ~qm=j~qmj

(4.13)

Where  wt (yaw of target orientation), �wt (pitch of target orientation), �wt (target
roll),  wm (yaw of missile orientation), �wm (pitch of missile orientation), and �wm
(missile roll) are all with respect to world axes. Yaw of seeker antenna ( ma) and

pitch of seeker antenna (�ma) are with respect to missile axes.

The radar cross section model consists of a binary space partition tree of point

scatterer clusters (section 4.2), each cluster is a valid model for a speci�c solid

angle segment. The appropriate cluster is retrieved by traversing the tree using

the current azimuth and elevation of the missile with respect to the target. The

azimuth ( ), elevation (�) and range (r) of the missile to the target may be found

from equation 4.14.



CHAPTER 4. MODEL INTEGRATION 64

r = jDtmj

[x y z] = Dtm

r

 = tan�1
�
y
x

�

� = sin�1(z)

(4.14)

4.3.4. Phase Comparison Seeker

Once an appropriate point scatterer model has been retrieved, the seeker head output

is calculated using equation 4.15.

�e = =
�
dz

s

�
vertical error

 e = =
�
dy

s

�
horizontal error

(4.15)

Equation 4.16 details how the sum and di�erence signals in equation 4.15 are

calculated from the simulated received echo from the target (equation 4.18).

dz = (�2 + �4)� (�1 + �3)
dy = (�1 + �2)� (�3 + �4)

s = �1 + �2 + �3 + �4

(4.16)

Received echos are calculated for four independent phase centres located at the

simulated missile position. The positions of the phase centres are calculated as

shown in equation 4.17.

F1 = Dtm + ~qm[0; [0 x x] ]~q�m

F2 = Dtm + ~qm[0; [0 x �x] ]~q�m

F3 = Dtm + ~qm[0; [0 �x x] ]~q�m

F4 = Dtm + ~qm[0; [0 �x �x] ]~q�m

(4.17)

Where x is the Phase centre o�set (6cm typ.) and F1:::4 denote the seeker

head phase centres arranged
3 1

4 2
when viewed from the front.

Equation 4.18 details the calculation of the returned echo. The calculations are

performed with respect to the target axes set. Noise is added to the signal to give

a maximum detection range of RN metres against a 1m2 target. The noise level is

set to give a unity signal to noise ratio of the received echo at the range RN .

�n =
mX
p=1

Z

0
@
 
Tp � Fn

jTp � Fnj �
~̂d

!h1A ap
p
S

(
p
4�dnp)

�p e
j

�
2��pdnp

�
+�p

� ������
n=1:::4

+N(0; k2)ejU(0;�)

(4.18)
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Where

Z =

(
x x > 0

0 x � 0

and

h =
log

�q
1=2

�
log

�
cos

�
��
360

��
and RMS noise level is

k =

p
S

4�R2
N

~̂d is the unit direction vector of the seeker head, ~̂d = ~qm[0; [1 0 0] ]~q�m
Tp are the coordinates of target scatterer p (Target Axes)
S is the radar source power

� is the half power beam-width of the seeker head (10� typ.)

N(�; �2) denotes a Gaussian noise source with mean � and standard

deviation �.
U(a; b) denotes a random number generator that creates values uniformly

distributed in the range a � x � b.

4.3.5. Amplitude Comparison Seeker

For amplitude comparison, the seeker head output is calculated using equation 4.19.

�e = <
�
dz

s

�
vertical error

 e = <
�
dy

s

�
horizontal error

(4.19)

Equation 4.20 details how the sum and di�erence signals in equation 4.19 are

calculated from the simulated received echo from the target (equation 4.22).

dz = �((�2 + �4)� (�1 + �3))

dy = �((�1 + �2)� (�3 + �4))

s = �1 + �2 + �3 + �4

(4.20)

Four received echos are calculated using four squint vectors that share a common

phase centre located at the simulated missile position (Dtm). The squint vectors are

calculated as shown in equation 4.21. The arrangement aligns the bore-sight along

the half power regions of the beams.

a = cos

�
��

360

�

b = sin

�
��

360

�
=
p
2

~̂V 1 = ~qm[0; [a b b] ]~q�m

~̂V 2 = ~qm[0; [a b �b] ]~q�m
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~̂V 3 = ~qm[0; [a �b b] ]~q�m

~̂V 4 = ~qm[0; [a �b �b] ]~q�m (4.21)

Where � is the half power beam-width and ~̂V 1:::4 denote the unit seeker

head squint vectors arranged
3 1

4 2
when viewed from the front.

A beam-width of 3� is used in this thesis for the amplitude comparison seeker. The

seeker head will then produce very similar bore-sight error signal levels to a phase

comparison seeker with a 10� beam-width and 6cm head o�set (over range �1� of
o�-bore-sight angle).

Equation 4.22 details the calculation of the returned echo. The calculations are

performed with respect to the target axes set.

�n =
mX
p=1

Z

0
@
 
Tp �Dtm

jTp �Dtmj
� ~̂V n

!h1A ap
p
S

(
p
4�dnp)

�p e
j

�
2��pdnp

�
+�p

� ������
n=1:::4

+N(0; k2)ejU(0;�)

(4.22)

Each scatterer in the model is assumed to be independent of all other scatterers

for simplicity. The seeker head functions return bore-sight error data and range to

the missile model.

4.4. Engagement Model

4.4.1. Introduction

The engagement model consists of a homing guidance missile and a synthetic target

and allows controlled missile{target engagements to be simulated. The engagements

occur in a 3-dimensional world against targets that have a synthetic radar cross sec-

tion which 
uctuates realistically with respect to angle, range and frequency. The


uctuating radar cross section causes errors in the homing missile. These errors

are correlated to the target's motion and usually prevents the missile exactly hit-

ting the target. The extent of this miss distance gives an indication of the missile

performance against the target.

4.4.2. Model Structure

The engagement model structure is shown in �gure 4.10. Target and missile positions

and orientations are used with the radar cross section data to generate heading error

information for the missile model. The missile then manoeuvres in response and so

alters its position and orientation, changing its viewpoint of the target and therefore

the radar cross section that it sees. This process continues until the missile to target

range begins to increase and the engagement is terminated. The software is written

in a combination of MATLAB and `C' with a modular design to allow di�erent

model con�gurations to be integrated into the engagement scenario. Details of the

software may be found in [65]. Details of the homing missile may be found in [66].
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Figure 4.10: Block diagram of engagement model

4.4.3. Guidance Strategy

The missile uses a proportional navigation strategy to home onto the target. Before

launch, a collision triangle is formed to determine the required missile heading. The

target direction and velocity are used to triangulate an impact point. The missile is

launched to 
y toward the estimated impact point, rather than directly at the target.

The seeker antenna is pointed towards the target. The missile lateral acceleration

is controlled to keep the antenna angle, with respect to the missile body, constant.

Figure 4.11 shows the geometry graphically. If the antenna angle � is constant, the
line-of-sight rate is zero. A zero rate implies that the missile and target are on a

collision course.

The antenna is steered in response to the bore-sight error signals from the radar

in the seeker head. Fluctuations in the target radar cross section will cause glint

noise (chapter 6) and therefore upset the alignment of the seeker antenna. The the

mis-alignment creates a noisy line-of-sight rate and therefore a miss distance.

4.4.4. Miss Distance Calculations

There are two de�nitions for miss distance. These are:

1. Trial Miss Distance { The minimum achieved distance between the missile

seeker head centre and the target centre in each engagement.

2. Missile Miss Distance { The distance within which 39% of all trial miss

distances fall. This corresponds to a half standard deviation radius from the

target.

The trial miss distance is calculated at the end of each engagement. The missile

miss distance is calculated from a batch of trial miss distances. The missile miss

distance gives a good indication of overall missile performance. Real missiles have a

proximity fuse that detonates the warhead when the missile is within an optimum

range. The warhead in most missiles is e�ective up to three or four metres from
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the target hull. In the target models used in this thesis, the closest scatterer to

the target centre is 1:6 metres away. Therefore, any miss-distances of 1:6 metres or

less may be classed as a direct impact. With an e�ective range of 4 metres for the

warhead, distances of 5:6 metres or less are a hit, ignoring the chances of hitting the

aircraft's wings.

As the engagement is conducted in discrete time, the smallest range measurement

in the engagement may not be an accurate representation of the miss distance.

Figure 4.12 shows the missile and target tracks around the point of interception,

with the indicated locations being separated by the seeker sample time (� 2 milli-

seconds). As the missile has a speed of around 600 m/sec, in a 2 milli-second frame it

travels around 1:2 metres. Thus the assumption may be made that over the sample

interval in which the interception occurs, the target and missile are travelling in

straight lines.

T-1

M-1

M0

T0

T1

M1

m d

Figure 4.12: Missile and target tracks at interception

If the target and missile tracks are described as the vector representation of the

lines shown in equation 4.23, then the trial miss distance may be de�ned as shown

in equation 4.24, with 0 � e � 1.

TI = T0 + e(T1 � T0)

MI = M0 + e(M1 �M0) (4.23)


 = jMI � TI j = j~gj =
q
~g � ~g

md = min(
) (4.24)

The minimum miss distance occurs when

d(
)

de
= 0 (4.25)

Therefore if

~g =MI � TI =M0 � T0 + e(M1 �M0 � T1 + T0)



CHAPTER 4. MODEL INTEGRATION 70

Then
d(
)

de
= (~g � ~g)�1=2

 
~g � d(~g)

de

!
=
~g � (M1 �M0 � T1 + T0)p

~g � ~g (4.26)

As
p
~g � ~g on the denominator of equation 4.26 is 
, for equation 4.25 to be satis�ed,

~g � (M1 �M0 � T1 + T0) = 0

(M0 � T0 + e(M1 �M0 � T1 + T0)) � (M1 �M0 � T1 + T0) = 0 (4.27)

If we select a =M0�T0 and b = (M1�M0�T1+T0) then equation 4.27 becomes

(a+ eb) � b = 0

a � b+ e(b � b) = 0

e = �a � b
b � b (4.28)

and


 = ja+ ebj (4.29)

Finally, inserting equation 4.28 into equation 4.29 gives

md =

�����a� a � b
b � b b

����� (4.30)

If the interception point is near to M1 and T1, the engagement may sometimes

have one too many sample frames to interception. The stop criteria of the range

increasing can be fooled into not terminating at the correct sample instant. In this

scenario, a negative value for e will be obtained when equation 4.28 is evaluated. In

this situation, the correct result may be obtained for the miss distance by repeating

the calculations with T1 = T0, M1 =M0, T0 = T�1 and M0 =M�1.

4.5. Engagement Model Proving Trials

There are two main disturbance mechanisms that occur during the engagement,

antenna noise and target glint. Antenna noise is Gaussian noise that is generated

within the antenna and processing circuits and remains at a constant level through-

out the engagement. When the bore-sight error signal is generated, the antenna

noise gets divided by the received echo strength and so appears to decrease with

reducing range. Target glint noise is caused by 
uctuations in the radar cross sec-

tion inter-reacting with the mono-pulse processing in the seeker head. Target glint

errors are related to the relative rate of rotation between the target and missile, and

also to range. Short ranges are most a�ected by target glint, whereas long ranges

are most a�ected by antenna noise. Details of the noise characteristics are covered

in chapter 6.

Two initial experiments with 1000 trials in each were performed. The ideal

single-point model was used to give no glint e�ects, and each experiment used a

di�erent seeker head, but with no simulated antenna noise. Every trial had a zero

miss distance. Therefore, with no antenna noise and no glint, the missile miss

distance is zero. These trials give the benchmark results for testing a hypothesis.
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The hypothesis that the miss-distance distribution is dependent on antenna noise,

target radar cross section, and seeker head type must be tested. Two objectives are

de�ned in section 1.5.2. The �rst requires the e�ects of the two seeker heads on an

ideal target to be evaluated. The second requires that the e�ects of a complex target

on the two seeker types is investigated. The models used are detailed in appendix B.

Four experiments are required to be performed. They are detailed in table 4.2.

Target Type

Seeker Type Single Point Fifty Point

Phase Comparison Experiment a Experiment c

Amplitude Comparison Experiment b Experiment d

Table 4.2: Model proving experiments

In each of the experiments, 1000 missile trials are performed. A set of 1000

launch positions are generated at random. The launch positions are generated using

equations 4.31 and 4.32. These equations generate points with a uniform distribu-

tion across the surface of a 5Km radius sphere. In the equations, x1 and x2 are

uniformly distributed random variables with �1 � x � 1,  is azimuth in radians,

� is elevation in radians, and [x y z] is a position in metres referenced to world axes.

Each experiment uses the same set of launch positions for consistency.

 = �x1

� = sin�1(x2) (4.31)

x = 5000 cos( ) cos(�)

y = 5000 sin( ) cos(�)

z = 5000 sin(�) (4.32)

4.5.1. Experiment a

The engagements were run with the parameters in table 4.3.

Figure 4.13 shows the cumulative probability distribution for the 1000 miss dis-

tances. The missile miss distance equates to the distance within which 39% of the

shots fall and is marked on the graph. All the trials have a miss distance of less than

1:6 metres and are therefore all direct hits. The small spread of miss distances are

due to the noise on the bore-sight error signals from the antenna. This result shows

that the miss distance is a�ected by simulated antenna noise, but at a low level.

4.5.2. Experiment b

The engagements were run with the parameters in table 4.4.

Figure 4.14 shows the cumulative probability distribution for the 1000 miss dis-

tances. The spread of miss distances are again small and due to the antenna noise
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Parameter Value

Source power, S 100W

Target detection range, RN 10Km

Seeker type Phase Comparison

Frequency 10 Ghz

Beam-width, � 10�

Head O�set, x 0:06m

Model Single Point

Table 4.3: Experiment a con�guration
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Figure 4.13: Cumulative miss distance probability { Experiment a
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Parameter Value

Source power, S 100W

Target detection range, RN 10Km

Seeker type Amplitude Comparison

Frequency 10 Ghz

Beam-width, � 3�

Model Single Point

Table 4.4: Experiment b con�guration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Miss Distance

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Missile Miss Distance=0.10 metres

Cumulative Miss Distance Probability Curve, Experiment b

Figure 4.14: Cumulative miss distance probability { Experiment b
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a�ecting the bore-sight error signals. The performance of the missile is slightly

worse with the amplitude comparison seeker head. This degradation of performance

is probably due to the missile's Kalman Filter con�guration being non-optimal. The

�lter con�guration was tuned for the phase comparison seeker head. The deviation

from the optimal �lter con�guration is small, but signi�cant enough to show a dif-

ference in these results. All the trials may be classi�ed as direct hits.

4.5.3. Experiment c

The engagements were run with the parameters in table 4.5.

Parameter Value

Source power, S 100W

Target detection range, RN 10Km

Seeker type Phase Comparison

Frequency 10 Ghz

Beam-width, � 10�

Head O�set, x 0:06m

Model Fifty Point

Table 4.5: Experiment c con�guration

Figure 4.15 shows the cumulative probability distribution for the 1000 miss dis-

tances. Only 83% of the trials have a miss distance of less than 5:6 metres and

are therefore within warhead range. The missile miss distance is calculated as 2:26
metres. This distance is quite small but it is apparent from the distribution that

there are a small number of very large miss distances of up to �ve times the target

length. This result shows that the miss distance is a�ected by target glint. The

e�ects on the missile can be drastic in a small number of cases.

4.5.4. Experiment d

The engagements were run with the parameters in table 4.6.

Parameter Value

Source power, S 100W

Target detection range, RN 10Km

Seeker type Amplitude Comparison

Frequency 10 Ghz

Beam-width, � 3�

Model Fifty Point

Table 4.6: Experiment d con�guration
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Figure 4.15: Cumulative miss distance probability { Experiment c
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Figure 4.16 shows the cumulative probability distribution for the 1000 miss dis-

tances. Only 91% of the trials have a miss distance of less than 5:6 metres and

are therefore within warhead range. The missile miss distance is calculated as 2:02

metres. This distance is smaller than for the phase comparison seeker and the dis-

tribution shows that there are far fewer large miss distances. The largest distance is

around the same size as the target length. This result shows that the amplitude com-

parison seeker is not a�ected as badly by target glint. The improved performance is

probably due to the bore-sight error function being better behaved at extreme error

angles than for a phase comparison seeker (see �gures 4.6 and4.7).

4.5.5. Conclusions

The results of the experiments are summarised in table 4.7.

Experiment Missile Miss Distance, metres Hit rate,% (< 5:6m)

a 0.06 100

b 0.10 100

c 2.26 83

d 2.02 91

Table 4.7: Summary of experimental results

Miss distance is in
uenced by thermal noise. At long ranges where the re
ected

energy from the target is small, the e�ects of thermal noise may be large. At close

range, the levels of noise are likely to be small compared to the echo strength. Target

glint has a major in
uence on the miss distances. The phase comparison seeker

head is e�ected more than the amplitude comparison seeker with the possibility of

a small percentage of extreme misses. These results suggest that the �delity trials

should be performed with the amplitude comparison seeker. This seeker appears to

have a more compact distribution compared to the long-tailed distribution of the

phase comparison seeker. The chances of the statistical comparisons being upset by

extreme miss distances will be reduced. Target manoeuvre detection trials though

should be conducted with the phase comparison seeker as the target glint appears

more severe and should be easier to detect and monitor.



5. Target Fidelity Analysis

5.1. Introduction

By its very nature, the e�ect of glint on a missile is di�cult to quantify determinis-

tically. The engagement model provides a means of evaluating the e�ect of a target

on a simulated missile. To minimise simulation times, we would like to use a model

with the fewest scatterers possible. If the number of scatterers in a point scatterer

model is reduced, only an approximation of the original radar cross section pattern

can be re-created. The error between the original pattern and the pattern from the

reduced model will increase as fewer scatterers are used. The error is a gauge of the

�delity of the reduced model to the original target.

This chapter is concerned with establishing the e�ects on the missile performance

of reducing the model size and therefore the target �delity. First, the approach to

the experiments is described. Then the method of model reduction is detailed. The

trial results are presented and �nally conclusions are drawn about the e�ects of

�delity on missile performance.

5.2. Problem De�nition and Existing Work

In order to minimise simulation times, models with the smallest number of scatterers

must be used. We may often require the model to be an accurate representation of

a speci�c target. The number of scatterers in the model must be traded against the

accuracy of representation, or �delity. If scatterers are removed from a high-�delity

model, the magnitude and phase characteristics of the remaining scatterers can be

adjusted to approximate the original target. The adjustment is achieved using the

constrained least squares �tting process detailed in appendix D.

Quantifying �delity is di�cult. The cost function de�ned in equation 3.1 is

useful for indicating the di�erence between two radar cross section patterns. Unfor-

tunately, di�erent targets will have di�erent characteristics and their cost functions

are not related. Statistical measures, such as the Kolmogorov{Smirnov and Mann{

Whitney statistical tests provide a convenient yardstick, if somewhat noisy, that are

independent of radar cross section magnitude and distribution. Previous work on

radar cross section �delity has shown that it is often possible to reduce the number

of scatterers while not altering signi�cantly the radar cross section pattern [61].

The e�ects of a reduced �delity model on missile miss distance are unknown.

The problem is to establish how far models can be reduced before the trial miss

distance distribution is signi�cantly di�erent to that seen with the original target.
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5.3. Experimental Approach

For any statistical analysis to be reliable, the target must be analysed stochastically

over 4� steradians. To achieve this coverage, synthetic missiles were �red towards

a stationary target from random start points on a sphere. To establish the e�ects

of �delity on the missile, repeated trials of the missile have been performed against

the reduced targets. The following hypothesis was tested for each of the reduced

models:

Null Hypothesis H0: The reduced model causes similar missile miss

distances to the reference model.

Alternative Hypothesis H1: The models cause di�erent miss distances.

For each model, one thousand trials were performed, each from a randomly

chosen start point. A range of �ve kilometres was chosen for all of the engagements.

This range is su�ciently far enough away to minimise the e�ects of range on the glint

errors, but maintains a short execution time for the simulation. One thousand trials

were performed in order to obtain good statistical results but with an acceptable

processing overhead. Every trial for every model was begun from a randomly chosen

position. Two sets of reference data were generated, one for the �fty-point model

and one for the one hundred point model. Each set of data contains the miss distance

results of 1000 trials. Two statistical tests were performed on the experimental data

for each of the model types and sizes. Each test compares the appropriate set of

reference data to the set of trial data being investigated.

The Kolmogorov{Smirnov statistical test compares the distribution of a pair of

data sets. The test is applied at � = 0:05 to reject H0. The Mann{Whitney test

is a test of means and is also applied at the � = 0:05 level. Both of the tests are

distribution free and are described in appendix D.

5.4. Reduced Model Generation

The reduced �delity models for the trials were generated from the �fty-point and

one-hundred-point models described in appendix B. The iterative reduction method

(section 3.2) was used to generate quickly a set of reduced models. This set was

used to seed the genetic algorithm described in chapter 3.

Full 4� steradian coverage is required for the missile trials. The reference target

echo pattern was generated from 10; 000 samples taken at random positions gener-

ated using equation 4.31. This equation gives uniform coverage of the target. The

coe�cients of the scatterers in the reduced models were �tted using the constrained

least squares process. The 10; 000 azimuth and elevation data used to generate

the reference echo pattern are also used in the �tting of each reduced model. The

10; 000 points used can only give an approximation to the true 4� steradian radar

cross section. Using more points would improve the accuracy but at a rapidly in-

creasing computational cost. The tree structure described in section E.3 may be used

to reduce the genetic algorithm processing burden by storing previously generated

chromosomes and objectives to prevent unnecessary repeat calculations.
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The �nal Pareto set of results may not be the true optimum though for the

set of 10; 000 trial points chosen. The genetic algorithm was stopped after 300

generations. Allowing the algorithm to run for longer may have improved the set of

reduced models but at increasing computational cost. If a di�erent set of points are

chosen over which to match the target echo pattern, a di�erent set of models may

be generated.

Figure 5.1 shows the results of reducing the 50-point model. The upper plot

shows the Kolmogorov-Smirnov signi�cance levels generated by comparing the radar

cross section of the reduced models to the original model. Here, error signi�cance is
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Figure 5.1: Results of reducing 50-point model for �delity trials

plotted against model size with the 5% limit drawn on the graph. The sections of

the curve that are below the line correspond to H0 being rejected, ie. the radar cross

sections are not the same. Applying the hypothesis test at � = 0:05, the smallest

model where the hypothesis H0 is accepted has 36 scatterers out of 50. The lower

plot shows the mean squared error between each reduced model's radar cross section

pattern and the reference pattern (equation 3.1).

Figure 5.2 shows the results of reducing the 100-point model. The model was

produced with the scatterers positioned at random to give a similar physical extent

to that of the 50-point model. It is interesting to note that the minimum model size
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Figure 5.2: Results of reducing 100-point model for �delity trials



CHAPTER 5. TARGET FIDELITY ANALYSIS 82

where the hypothesis H0 is accepted has 56 scatterers out of 100. The di�erence in

the reduction ratio is probably due to the 50-point model's aircraft-like structure.

It is clear from comparing the cost function plots of �gures 5.1 and 5.2 that mean

squared error is not a good gauge of �delity as the curves' scales are related to the

di�erent radar cross section patterns.

The experiment is required to establish:

1. If the missile is in
uenced by target structure.

2. The reduction factor that can be applied before the target �delity is compro-

mised.

3. If the � = 0:9 level used in the model �tting process will ensure a high �delity

model.

The launch position for the missile will be chosen at random. The missile will be

�red from a 5km range towards a stationary target. Table 5.1 shows the missile

con�guration used in the trials. Two experiments will be performed:

Parameter Value

Source power, S 100W

Target detection range, RN 10km

Seeker type Amplitude Comparison

Frequency 10 Ghz

Beam-width, � 3�

Table 5.1: Missile con�guration for �delity trials

a. 1000 missile trials against each of the models derived from the 50-point target.

b. 1000 missile trials against each of the models, with an even number of scat-

terers, derived from the 100-point target. Only the even-sized models will be

used to keep the processing overhead within reasonable limits.

A total of 100; 000 missile trials will be required to complete the experiments.

5.5. Experiment Results

Table 5.2 summarises the results of the experiments. Figure 5.3 shows the results of

the trial miss-distance comparisons for the models derived from the 50-point model

(Experiment a). The upper plot shows the Kolmogorov{Smirnov signi�cance against

model size with the 5% limit drawn on the graph. The sections of the curve that

are below the line correspond to H0 being rejected, ie. the miss distances are not

the same. The lower trace shows the Mann-Whitney error �gure against model size

with the 5% limit drawn on the graph. The sections of the curve that are above the

line correspond to H0 being rejected, ie. the miss distances are not the same. Both

tests agree that the smallest model where H0 is accepted has 25 scatterers.
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Parameter Experiment a Experiment b

Number of trials 50,000 50,000

Reference model 50-point 100-point

Minimum H0 K{S accept (RCS) 36 scatterers 56 scatterers

Minimum H0 K{S accept (Miss Dist) 25 scatterers 54 scatterers

Minimum H0 M{W accept (Miss Dist) 25 scatterers 54 scatterers

Table 5.2: Results of target �delity experiments
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Figure 5.3: Results of experiment a of the �delity trials (50-point model)
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Figure 5.4: Results of experiment b of the �delity trials (100-point model)
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Figure 5.4 shows the results of the trial miss-distance comparisons for the mod-

els derived from the 100-point model (Experiment b). The upper plot shows the

Kolmogorov{Smirnov signi�cance against model size and the lower trace shows the

Mann-Whitney error �gure against model size. Both tests agree that the smallest

model where H0 is accepted has 54 scatterers.

5.6. Conclusions

The key results of the experiments are as follows:

1. The reduction factor to achieve � = 0:05 for the Kolmogorov-Smirnov test of

the model radar cross section may be in
uenced by the scatterer distribution.

2. The reduction factor to achieve � = 0:05 for either the Kolmogorov-Smirnov

test or the Mann-Whitney test of the trial miss distances appears to be inde-

pendent of the model structure. The reduction factor is � 1
2
.

3. A model that is reduced to the � = 0:05 limit of radar cross section will be

within the � = 0:05 limit of the trial miss distance distribution.

Result 3 is important as it con�rms that the � = 0:9 acceptance level used in

the image-to-model conversion process should result in high-�delity models. The

experiments have shown that the K-S statistical measure can be used to gauge the

level of target �delity. To minimise the processing overhead of the target manoeuvre

detection experiments in chapter 6, a high-�delity reduced model has been created.

The twenty seven scatterer model derived from the 50-point truth model has been

chosen. The twenty seven scatterer model is higher-�delity than the minimum 25-

point model, but is not too large to compromise computational e�ciency.



6. Target Manoeuvre Detection Using

Glint

6.1. Introduction

Current target tracking algorithms are highly sophisticated and capable of tracking

highly agile targets. Unfortunately, even agile targets spend most of their time in

straight, level 
ight. Tracking algorithms that are designed to track manoeuvring

targets are usually poor at following non-manoeuvring vehicles. The ability to switch

rapidly between di�erent tracking regimes is of paramount importance.

I have proposed that it may be possible, through observing glint noise, to detect

when a target has changed its orientation in preparation for a rapid manoeuvre.

As current aircraft performance is often pilot limited, in order to perform a high-g

manoeuvre, the aircraft must bank steeply. The rapid target rotation associated

with the bank is likely to produce a stream of glint spikes in the bore-sight error

signal.

Any ability to detect potential manoeuvres can be used to greatly enhance the

homing capability of missiles. The use of glint to augment target tracking is novel

and could be used to create a signi�cant tactical advantage in a radar guided missile

for little cost.

This chapter �rst investigates the existing techniques used for target manoeuvre

detection and glint processing. The noise characteristics of the bore-sight error

signal are examined and the construction of a fuzzy-logic based manoeuvre detector

is described. The experimental method is outlined and the trial results presented.

Finally the potential of the technique is discussed and recommendations are made

for further work.

6.2. Existing Manoeuvre Detection Techniques

6.2.1. Introduction

Two categories of manoeuvre detector have been identi�ed:

1. Prediction Methods { These methods attempt to identify a manoeuvre

by predicting the expected target position and comparing it to the measured

track.

2. Optical Methods { The detector attempts to identify changes in the targets

orientation by monitoring images of the target.
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6.2.2. Prediction Methods

Prediction is the conventional approach to target manoeuvre detection. The current

estimate of the target's position, velocity and acceleration are compared to the

known target track. If the target deviates from its previous course, the target is

manoeuvring. Unfortunately, the estimate of the target's position is subject to

noise. This uncertainty prevents manoeuvres from being detected rapidly.

Most of the manoeuvre detection schemes use Kalman �lter techniques to es-

timate the target parameters [67]. One of the most successful methods uses the

interacting multiple models (IMM) algorithm [68]. The algorithm allows the kine-

matic equations in the Kalman �lter to represent a set of di�erent manoeuvring

hypothesis. The ability to use di�erent target models enables the Kalman �lter to

use a tracking regime that best suits the target manoeuvre.

Prediction methods are quite slow and typically require a few seconds to detect a

manoeuvre. This speed of reaction is satisfactory for a ground based tracking radar,

but not for a missile.

6.2.3. Optical Methods

Kendrick et al. [69] �rst investigated the use of target orientation information from

optical sensors to augment tracking algorithms. A pattern recognition algorithm

was used to predict the target orientation from the images. The image processing

is quite computationally intensive. Sworder and Hutchins [70] also apply imaging

techniques in order to estimate target radial acceleration.

Shetty and Alouani [71] have used three centroid position measurements of the

target image to detect manoeuvres. This approach does not require any a-priori

knowledge of the target structure and is relatively quick to process. Romine and

Kamen [2] provide a detailed description of a Kalman �lter based optical manoeuvre

detector. Their results show that the optical technique can detect a manoeuvre in

under half a second.

Laneuville and Mariton [72] have proposed using an interacting multiple model

tracking algorithm with an image based manoeuvre detector. The number of pixels

in the image was suggested as a feature to use in the manoeuvre detector. They

observed a signi�cant improvement in the tracking performance over the basic in-

teracting multiple model algorithm approach.

6.2.4. Discussion

The predictive methods are inherently slow in detecting rapid manoeuvres. The

performance is often satisfactory for ground-based target trackers, but unsuitable

for use in missiles. A combination of these sophisticated tracking techniques and a

fast manoeuvre detector would provide a better solution to the tracking problem.

Most of the optical methods are based on the assumption that the target must

bank before performing a high-g turn. The bank manoeuvre is required to prevent

the pilot experiencing excessive lateral g forces. Most of the methods operate by

counting the number of pixels that form the image of the target. As the target

manoeuvres, di�erent views of the target are seen. For example, if the target is

being viewed broad-side with its wings in the horizontal plane, a long, thin image
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will be seen. If the target performs a bank manoeuvre as part of a high-g turn away

from the observer, the wings of the target will rotate into the vertical plane. The

underside of the target will now be seen, presenting a much larger image area and

therefore a greater number of pixels.

The optical methods all require large amounts of image processing. Expensive

extra hardware would be required in a missile. Some of the techniques also require

knowledge of the target structure and characteristics. This is undesirable. Optical

techniques are more susceptible to climatic e�ects when compared to radar and are

only practically suitable for medium to short range engagements.

Sworder and Hutchins [73] provide a detailed investigation into the e�ects of

di�erent frame rates on the probability of detecting manoeuvres. They conclude

that even at very high frame rates, certain manoeuvres where there is only a small

change in the image, are very di�cult to detect reliably.

6.3. Glint Processing Methods

In order to detect target manoeuvres from glint, an investigation into the techniques

used to remove glint errors was conducted. These techniques give an insight into

the processing methods currently in use to identify glint spikes.

Many methods exist that attempt to improve target tracking accuracy in the

presence of glint. Most tracking radars utilise Kalman �lters to estimate optimally

the target motion from noisy radar data. Unfortunately, the Kalman �lter is highly

susceptible to non-Gaussian noise. It has been shown that glint noise is highly non-

Gaussian and has a long-tailed distribution [74]. The levels of noise due to glint also

increase with decreasing range. Wu [75, 76] has developed a tracking �lter that can

deal directly with the non-Gaussian glint noise by using multiple models internally

in a Kalman �lter.

A di�erent approach has been taken by Hewer et al. [74] where the error signal is

pre-processed in an attempt to make the glint noise approximate a Gaussian distri-

bution. The pre-processing allows a conventional Kalman �lter to be used to remove

the noise without compromising the �lter stability. Das and Yoganandam [77, 78]

apply non-coherent processing to amplitude comparison monopulse signal envelope

data in an attempt to reduce glint and the e�ects of receiver phase imbalances. This

method is robust and achieves a consistent improvement in glint error.

It has been shown that glint spikes are highly correlated to deep echo amplitude

fades and yet uncorrelated with glint observed at other frequencies or aspect angles

[79]. These principles have been applied to glint reduction in a number of ways.

Borden [80] derives methods that use either frequency or angular agility to integrate

multiple bursts and therefore average out the glint spikes. The techniques work but

may require sophisticated seeker heads in order to function properly. Guest [81]

utilises the correlation between amplitude fades and glint spikes to censor the data

being passed to the Kalman �lter when fades occur. The censoring gives a general

improvement but small glint spikes still pass through to the Kalman �lter.

In general, target tracking becomes more and more di�cult the closer the radar

gets to the target. In the last few hundred metres, the glint noise can be extreme

and highly non-Gaussian in nature. Of the glint reduction methods surveyed, all can
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give an improvement in the tracking capabilities of the radar but none can eliminate

the e�ects of glint totally.

The approaches that use a combination of the bore-sight error signal and the

radar cross section seem to be the most promising. Antenna noise e�ects are re-

lated to the target radar cross section and must be accounted for in the manoeuvre

detector processing.

6.4. Bore-sight Error-Signal Noise Characteristics

6.4.1. Introduction

The noise on the bore-sight error-signal consists of two main components:

1. Antenna Noise { The antenna noise levels seen in the bore-sight error signal

decay with decreasing range but are also related to the target radar cross sec-

tion. Most of the noise is thermally generated and has a Gaussian distribution.

Antenna noise is the dominant source at long and medium range.

2. Target Glint { The noise is highly non-Gaussian and is related to the relative

rate of tangential rotation between the target and the missile. Glint is the noise

to be used to detect a manoeuvre. Target glint noise also occurs due to changes

in range. This range-glint occurs mainly at short ranges and is the dominant

source of noise in the last few kilometres of an engagement.

These mechanisms and the approaches taken to account for the noise are detailed

below. Noise induced by countermeasures is beyond the scope of this feasibility

study.

6.4.2. Antenna Noise

Antenna noise is a combination of channel noise, receiver noise and the thermal

noise in the signal processing stages. The noise is approximately Gaussian and the

signal from each antenna may be de�ned as N(�; k2), where � is the mean of the

signal and k2 is the variance of the noise. The noise variance, k2, is a characteristic

of the missile and essentially remains constant throughout the engagement. An

approximation for k may be calculated from the operational characteristics of the

missile. Equation 6.1 details this calculation, where the RMS noise level k is set

to give a unity signal to noise ratio of the received echo, at the range RN metres

against a 1m2 target. The source power of the missile is denoted by S, normalised
to give an antenna with unity gain.

k =

p
S

4�R2
N

(6.1)

As part of the bore-sight error-signal processing, a sum and di�erence of the

four receiving antennas in the seeker head is formed. If the seeker is aligned with

the target, the di�erence channel will be a function of antenna noise only. Equa-

tions 6.2 and 6.3 show the noise functions of the di�erence and sum signals, where
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z represents the magnitude of the echo signal from the sum channel.

d = N(0; 4k2) (6.2)

s = N(z; 4k2) (6.3)

The monopulse ratio may be approximated from the di�erence and sum signals.

Equation 6.4 shows the approximation used for dividing two Gaussian noise signals.

The equation has been derived empirically and is detailed further in appendix F.

N(�1; v1)

N(�2; v2)
� N

 
�1

�2
;
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�22(�
2
2 + v2)

!
(6.4)

Applying equation 6.4 gives the result shown in equation 6.5.
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For phase comparison monopulse, the imaginary part of the monopulse ratio is

extracted. By reference to the noise model in equation 4.18, the e�ects on the noise

will result in equation 6.6.
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d
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0;
2k2

z2

!
(6.6)

If a small number of bore-sight error and sum signal samples are taken (10 in this

study), the mean radar cross section, z, can be approximated from the mean of the

sum signal, �s. Thus the antenna noise may be approximated as shown in equa-

tion 6.7, where the signals now represent short vectors of samples. Equation 6.7

may also be applied to amplitude comparison monopulse where the real part of the

complex di�erence is used instead of the imaginary part as here.

Nb = N(0; k2) � �sp
2
=
 
d

s

!
(6.7)

The set of samples, Nb, may be normalised using equation 6.8 to give B̂, which

is an approximation of the bore-sight error signal with an antenna noise component

of zero mean and unity variance.

B̂ � Nb �Nb

k
(6.8)

The standard deviation of B̂ may now be monitored. The e�ects of antenna

noise, now corrected for range and radar cross section, should lie within two standard

deviations for 95% of the time. Any signals outside this range are likely to be glint.

The theoretical analysis is only approximate and will need to be addressed if

a more re�ned manoeuvre detector is to be developed. The optimum number of

samples to use is unknown. More samples may delay detection of the manoeuvre

and less samples will increase the chances of false detection.
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6.4.3. Target Glint

Target glint is an artifact of monopulse processing and represents an apparent po-

sitional error of the target. Monopulse processing e�ects are described earlier in

section 4.3.2. Glint spikes are highly correlated to the target radar cross section

pattern and most often occur when the radar cross section amplitude fades. The

e�ect is that the signal in the sum channel of the seeker head becomes very small

and the bore-sight error signal approaches a divide-by-zero condition. Radar cross

section amplitude fades occur due to echos from scatterers being out of phase and

cancelling at the receiver. Target glint is associated both with target rotation and

range. In proportional navigation homing missiles, a zero rate of line-of-sight rota-

tion is maintained. Thus glint spikes caused by rotation should only occur during a

manoeuvre.

In �gure 6.1, the seeker antenna is pointed directly at scatterer-A but is receiving

echos from both scatterers. If the scatterers are the same magnitude, at very long

ranges, distance r is approximately the same as distance q. As the range reduces,

the distance q must be represented as q =
p
r2 + x2. When the di�erence between r

and q is half a wavelength, the scatterers will cancel, causing a glint spike. This type
of noise is range dependent and has been termed range-glint . As we are interested

in active seekers, the distance that the radar pulse/echo travels is twice the range

to the scatterer. Equation 6.9 details the condition for the furthest glint spike.

q

x

r

Scatterer AScatterer B

Observer

Figure 6.1: Scatterer con�guration for glint calculations

2q � 2r =
�

2p
r2 + x2 � r =

�

4

x2 =

 
�

4

!2

+
�r

2
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r = 2

��
�
4

�2
+ x2

�
�

(6.9)

As
�
�
4

�2
is very small in comparison to x2 at the frequencies and distances of interest,

the maximum range may be simpli�ed as shown in equation 6.10.

r = 2
x2

�
(6.10)

For an n-point scatterer model, there are n(n� 1)=2 possible inter-scatterer dis-

tances. Figure 6.2 shows a histogram of the distribution of the 1225 inter-scatterer

distances associated with the 50-point model detailed in appendix B. For compar-
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Figure 6.2: Histogram of inter-scatterer distances (50-point realistic model)

ison, �gure 6.3 shows a histogram of the distribution of the 4950 inter-scatterer

distances associated with the 100-point model detailed in appendix B. The scatter-

ers in the 100-point model were distributed randomly. The distance histogram has

only one peak. To determine if the multiple peaks in the histogram of the 50-point

model are characteristic of the target shape, the 128-point model produced from

the real 2D data in chapter 3 was investigated. Figure 6.4 shows a histogram of
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Figure 6.3: Histogram of inter-scatterer distances (100-point random model)
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the distribution of the 8128 inter-scatterer distances associated with the 128-point

model produced from the real 2D data. The multiple peaks are clearly visible and

the locations correspond well to the peaks in �gure 6.2. Clearly the target structure

is important for generating realistic targets. The di�erence in peak sizes is probably

due to the real data only being two-dimensional and �tted over an narrow angular

range.
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Figure 6.4: Histogram of inter-scatterer distances (128-point 2D model)

Figure 6.5 shows a histogram of the maximum distance for the range-glint spikes

associated with the inter-scatterer distances shown in �gure 6.2. The multiple peaks

are again a dominant feature of the distribution. Consequently, there is an unex-

pected increase in the frequency of glint spikes due to changing range at around

ten kilometres. The 50-point target has a twenty metre wing-span. Smaller tar-

gets would produce shorter range-glint distributions. In practice, the antenna never

points exactly at a scatterer. The distances r and q in equation 6.9 become more

similar as the antenna moves between the scatterers. The range at which each spike

will occur will therefore be reduced slightly. Thus in practice, the distribution shown

in �gure 6.5 will be continuous.

The seeker head used in this investigation has a sample time of two milli-seconds.

This sample rate is far too slow to see the rise and fall of each glint spike caused
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by target rotation. The glint spikes from a manoeuvre appear as high-level wide-

band noise on the bore-sight error signal. Range-glint spikes occur singly at medium

range, with their frequency increasing with reducing range. It is possible for range-

glint spikes to extend across many samples. The e�ect can in
uence the standard

deviation of B̂ and cause false triggering of the manoeuvre detector. To counter these

low frequency signals, the standard deviation of a high-pass �ltered version of B̂ is

also monitored. The high-pass �lter is easily achieved by numerical di�erentiation

of B̂, giving dB̂
dt
. Observations indicate that the standard deviation of dB̂

dt
is about

twice that of B̂ (assuming dt = 1). This empirical result is su�cient for use in the

fuzzy-logic detector.

Figure 6.6 shows the bore-sight error signal for a typical engagement from a range

of 10km. The engagement shown included a 2g coordinated manoeuvre lasting 1.3

seconds. Extreme glint spikes in the bore-sight error signal have been cropped to �2
to aid legibility. The manoeuvre is indicated by the dashed line on the plot, the slop-

ing sections indicating the periods when the target was banking. Figures 6.7 and 6.8
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Figure 6.6: Typical bore-sight error plot (10km engagement)

show the plots of B̂ and dB̂
dt

respectively for the �rst eight seconds of the engagement.

The manoeuvre is quite clear on these �gures.
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Figure 6.7: Normalised bore-sight error plot of �gure 6.6 (B̂)
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It is proposed that to trigger the manoeuvre detector, the standard deviation

of both B̂ and dB̂
dt

should be large (� 2 or greater for B̂, � 4 or greater for dB̂
dt

for

95% inclusion). The seeker head generates signals for both horizontal and vertical

errors. A signi�cant signal in either channel should trip the manoeuvre detector.

At medium and short ranges, there should be a slight delay between the �rst glint

spike being detected and activation of the manoeuvre detection signal. Indication

of a manoeuvre should only be generated if the glint spikes are still present at the

end of the delay period. The delay helps prevent the solitary range-glint spikes

from causing false alarms, at the expense of an increased turn-on delay. At long

ranges the glint spikes from a manoeuvre may be small in size and widely spaced.

Therefore, only a very short delay should be used.

Once a manoeuvre has been detected, the manoeuvre detector must be able to

coast over small gaps between the spikes. The wider the gap that can be tolerated,

the less likely are the chances of terminating falsely the manoeuvre indication signal.

The longer the hold time, the longer it will take for the detector to signal the end of

a manoeuvre. While the detector is activated, a large standard deviation of either

B̂ or dB̂
dt

would be su�cient to maintain the detection signal.

In the last few kilometres of the engagement, the normalised bore-sight error

signal level, B̂, becomes very susceptible to range-glint, causing false triggering of

the manoeuvre detector. Luckily, the levels of glint due to a manoeuvre are also

very large in this region. It is suggested that the standard deviation of the raw

bore-sight error signal is used directly, with a suitable gain to bring the manoeuvre

glint spikes into the range of � 3 standard deviations. This gain needs to reduce

with reducing range to account for the increasing glint levels. Typical signal levels

may be seen in the last three seconds of the engagement shown in �gure 6.6. In the

engagement used to generate �gure 6.6, the missile was unable to recover from the

2g manoeuvre and missed the target by 117 metres.

6.5. Manoeuvre Detector Construction

6.5.1. Introduction

As only a feasibility study is being performed into target manoeuvre detection using

glint, a fuzzy-logic approach was adopted for speed of development and simplicity.

The fuzzy-logic detector is only intended as a proof-of-principle model and therefore

only a minimum of tuning was performed.

Fuzzy-logic is a convenient method for mapping input data into a new output

space. The form of the mapping is controlled essentially by the membership func-

tions used to fuzzify the input data, a set of rules that determine which output

functions are active, and the output function shapes. An excellent description of

fuzzy-logic is given in the MATLAB Fuzzy Logic Toolbox Manual [82].

6.5.2. Concept

The manoeuvre detector has been constructed from four di�erent fuzzy inference

system module types. Figure 6.9 shows how the modules are inter-connected. The

functions of the four modules are as follows:
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Figure 6.9: Block diagram of fuzzy-logic manoeuvre detector

1. Stage 1 { This module removes the range dependent characteristics of the

bore-sight error signals. The signals Bn and Br represent the standard de-

viations of the normalised and raw bore-sight error signals respectively. The

signals dBn and dBr represent the standard deviations of the di�erentiated

versions of the normalised and raw bore-sight error signals. At long ranges,

the normalised signals are passed straight through. At short ranges, the raw

error signal is output through a range-dependent gain.

2. Stage 2 { The module combines the four processed standard deviation sig-

nals for the normal horizontal, di�erentiated horizontal, normal vertical, and

di�erentiated vertical components. Two signals are generated. The �rst, xl,

is active when all the signals are low. The second, xh, is active when either

both horizontal signals or both vertical signals are large.

3. TMD { The manoeuvre detector module uses the activity signals from stage-2

to provide the manoeuvre detection signal. The trigger delay and detection

hold functions are implemented by using a state feedback loop for each func-

tion. The delay and hold times are range dependent.

4. TMC { This module provides an indication of the manoeuvre detection signal

accuracy. When the delay or hold functions are operating, the signals from

the stage-2 module may contradict the manoeuvre detector output. The con-

�dence signal should therefore be low accordingly. The con�dence level is also

reduced at both long and short ranges to re
ect the di�culty of detection.
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Details of the software for each of the modules is given in appendix G.

Figure 6.10 shows the output of the manoeuvre detector for an example 6g co-

ordinated turn. The detector turned on in 80 milli-seconds and turned o� in 104

milli-seconds.
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Figure 6.10: Example manoeuvre detector response

6.6. Experimental Method

In order to determine the general performance of the manoeuvre detector, an ex-

periment was devised that could characterise the following performance criteria.

1. Turn on time

2. Turn o� time

3. Reliability of detecting manoeuvre

4. Reliability of detecting manoeuvre start

5. Reliability of detecting manoeuvre progress



CHAPTER 6. TARGET MANOEUVRE DETECTION USING GLINT 102

6. Reliability of detecting manoeuvre end

As the noise characteristics are range dependent, the performance criteria must be

evaluated for engagements at di�erent ranges. The performance of the con�dence

output, tmc, is not required to be evaluated.

The e�ects of di�erent launch positions need to be minimised in this experiment,

therefore the launch positions will be chosen at random using equation 4.31 to give

uniform 4� steradian coverage. The launch range will be chosen at random from

between 1km and 20km. A random delay lasting between 0.2 and 1 second will

be given before the manoeuvre to allow the missile to stabilise. The manoeuvre

will be a 6g coordinated turn. This manoeuvre involves the target banking to

80:4� to maintain a maximum lateral force of 1g on the pilot. The bank will take

0.51 seconds to complete. The turn will be maintained for a period of between

0.25 and 0.75 seconds before the target reverse banks and returns to straight, level


ight. The reverse bank manoeuvre will last for 0.51 seconds. The engagement

will be terminated 0.5 seconds after the manoeuvre has been completed. A 6g

coordinated turn is likely to seriously disturb the missile guidance and so there will

be no bene�t in extending the simulation after the manoeuvre. The target model

used in the simulation will be the 27-point model that resulted from the �delity

trials in chapter 5. The model is detailed in appendix B. Five thousand trials will

be run to give one trial approximately every four metres in range.

The missile uses a proportional navigation homing guidance system with a phase

comparison monopulse seeker. The seeker con�guration is shown in table 6.1.

Parameter Value

Source power, S 100W

Target detection range, RN 10km

Seeker type Phase Comparison

Frequency 10 Ghz

Beam-width, � 10�

Head O�set, x 0:06m
Model 27-Point

Table 6.1: Missile con�guration for manoeuvre detector trials

Figure 6.11 shows the timing details of the manoeuvre detection signal. Pre-

detection errors will occur in the time period ts. The rise time of the manoeuvre

detector is tr. Drop-out errors, where the detector falsely switches o�, will occur

during time tp. The fall time of the manoeuvre detector is tf . Post-detection errors

will occur in the time period te.

The following details of the trials will be logged:

1. Starting range of manoeuvre.

2. Turn-on time.

3. Turn-o� time.
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tr tftpts te

Actual Manoeuvre

Manoeuvre Detector

Figure 6.11: Timing details of the manoeuvre detection signal

4. The number of total detection failures, where the detector failed to respond

to the manoeuvre.

5. The number of start-detection errors, where the detector was already tripped

when the manoeuvre occurred.

6. The number of end-detection errors, where the detector failed to turn o� within

0.5 seconds after the manoeuvre ended.

7. The proportion of the pre-detection time (ts) that the detector was falsely

tripped.

8. The proportion of detection time (tp) that the detector had dropped out.

9. The proportion of the post-detection time (te) that the detector was falsely

tripped.

6.7. Trial Results

The results of the trials were sorted by manoeuvre start range before plotting. Ta-

ble 6.2 summarises the main results of the experiments.

Figure 6.12 shows the distribution of turn-on delay with respect to range. The

peak around 9km is coincident with the peak in the range-glint distribution of �g-

ure 6.5. The peak also seems to be related to the change in the delay time of

the fuzzy detector. An experiment with a di�erent delay time still maintained the

bulk of the peak, suggesting it is a target characteristic. The mean turn-on delay

time is 96 milli-seconds. This delay is comparable to the reaction speeds of optical

manoeuvre detectors.
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Parameter Result

Number of trials 5000

Mean turn-on delay 96 milli-seconds

Mean turn-o� delay 148 milli-seconds

Number of total failures 2

Number of detection failures 14

Number of turn-o� failures 403

Minimum range of manoeuvre start 850 metres

Maximum range of manoeuvre start 19891 metres

Table 6.2: Results of target manoeuvre detection experiment
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Figure 6.12: Turn-on delay with respect to range



CHAPTER 6. TARGET MANOEUVRE DETECTION USING GLINT 105

Figure 6.13 shows the distribution of the turn-o� delay times with respect to

range. The in
uence of the fuzzy membership function for range in the TMD module

is clearly visible between ten and twenty kilometres. The mean turn-o� delay time

is 148 milli-seconds. Again, the turn-o� time is comparable to the reaction speeds

of optical manoeuvre detectors.
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Figure 6.13: Turn-o� delay with respect to range

Figure 6.14 shows the proportions of pre-detection, during-detection, and post-

detection errors. The pre-detection errors are relatively few and occur mostly at long

range. At long ranges, the turn on delay is short and so the detector responds to

any isolated spikes. The during-detection errors re
ect the shape of the range-glint

distribution shown in �gure 6.5. The errors are caused because the glint spikes occur

mostly when the radar cross section fades. The increased frequency of glint spikes

around 9km causes the mean of the sum channel signal to be arti�cially reduced.

The mean, �s, is no longer a good estimate of the noise level, z. The use of �s may

be too crude for a more sophisticated detector.

The post detection errors are worst at low ranges where the glint e�ects of the

manoeuvre seriously a�ect the tracking ability of the missile. At the end of the

manoeuvre, the missile is unable to track the target and deviates away from the

required collision course. This deviation appears as a manoeuvre and is consequently
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Figure 6.14: Detection errors with respect to range
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detected. Results at very short ranges may be biased towards tail chase engagements

as only complete manoeuvres are used. At short ranges, head-on engagements do

not last long enough for the manoeuvre to be completed before impact.

There were only two engagements out of 5,000 where the manoeuvre detector

failed to respond to the target manoeuvre. Figure 6.15 shows a histogram of the

pre-detection and post-detection failures with respect to range. Each bar of the

histogram represents the total number of failures per kilometre. The pre-detection
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Figure 6.15: Detection failures with respect to range

failures occur most frequently at long range, although less than 0.3% of the trials

were a�ected. The post-detection failures are mainly due to the missile loosing

track of the target after the manoeuvre. The high concentration of failures at very

short ranges and the peak around 10km are probably due to range-glint falsely

triggering detection. From three to six kilometres, the missile is badly a�ected by

the manoeuvre. Between six and nine kilometres, the missile performance is at

its optimum and is often able to track the target after the manoeuvre. The good

performance of the missile leads to a reduced failure rate in this region. Above

eleven kilometres, the failures are mainly due to the missile loosing track, rather

than to range-glint.
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6.8. Conclusions

The performance of the missile has had a signi�cant e�ect on the trial results.

Details of the manoeuvre termination performance are mainly related to the missile

and not the manoeuvre detector, although the turn-o� times re
ect the shape of the

fuzzy membership functions. If the missile were able to track the target well at all

times, only the banking manoeuvres would probably be seen. The detector would

therefore drop-out during the turn-only section of the manoeuvre. This manner of

operation is still of great bene�t in augmenting tracking algorithms. The short range

results were biased towards tail chase engagements (�rst near head-on engagement

occurred at 1.3km). The e�ects of range-glint in this region have far outweighed

any in
uences of the biasing though.

The detector operated without error in over 91% of the trials. Despite the fuzzy

detector only being very roughly tuned, the detector only failed totally for 0.04%

of the trials. The average detection time of 96 milli-seconds and the high reliability

make target manoeuvre detection using glint very attractive. The main strengths

of the method are as follows:

� No a-priori target knowledge required.

� Fast response.

� E�ective for long, medium and short range engagements.

� Very reliable.

� Low processing overhead.

� Uses existing sensors.

� Low cost.

6.9. Recommendations for Future Work

The fuzzy-logic proof-of-principle target manoeuvre detector showed that the tech-

nique is e�ective and very reliable. It is suggested that an extended Kalman �lter

or fuzzy-logic/arti�cial neural network solution is investigated. The noise charac-

teristics developed for this study are only approximate. More rigorous analysis of

the system noise characteristics should be performed. If a fuzzy-logic approach is

used, tuning of the membership functions and the hold and delay times would be

necessary. The tuning may be best accomplished with an evolutionary optimisation

algorithm approach.



7. Conclusions

7.1. Introduction

This thesis has looked at the problems associated with generating realistic target

models for simulating engagements with homing guidance missiles. A point-scatterer

model approach has been taken to solve the modelling problems. The novel use of a

binary space partition tree structure allows complex model structures to be created

easily. The tree structure provides a framework that allows models of di�erent sizes

and complexities to form a single entity. The models are:

� Fast to process { Radar cross section data are simple to calculate from point

scatterer models. The tree structure allows the correct scatterer model for the

current viewing aspect to be retrieved quickly.

� High �delity { Models can be constructed that produce an accurate repre-

sentation of the source target's radar cross section pattern.

� High resolution { The point scatterer model will create realistic approxima-

tions of the radar cross section for any interpolated view aspects that were not

in the original target data.

� Correlated { The radar cross section is properly correlated to range and the

target motion.

� Low storage requirements { The point scatterer models are very compact

and have low storage requirements.

A suite of genetic algorithms have been used to create realistic point scatterer

models from ISAR data. The e�ects of reducing the �delity of the target have been

established. Limits on model reduction have been determined, allowing realistic

target models to be generated that minimise simulation times.

An e�cient, high �delity model has been applied to trials of a novel target

manoeuvre detection technique. A fuzzy-logic proof-of-principle model has been

developed to test the theory that glint can be used to detect target manoeuvres.

The results of the manoeuvre detector trials have been outstanding, showing that

the use of target glint to detect manoeuvres is:

� Fast

� Operates over wide range envelope

� Very reliable

� Has a low processing overhead

109
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� Uses existing sensors

� Cheap

The requirements for the thesis de�ned in section 1.4 (page 9) are discussed in

the conclusions below.

7.2. Item 1 { Automating model conversion

The process of generating point scatterer models from ISAR images has been auto-

mated and the processing overhead reduced when compared to existing techniques.

The conversion process may be broken into three elements. These elements have

been addressed as follows:

� A novel multi-species genetic algorithm for locating multiple scatterers in each

pass of the data. This algorithm dramatically reduces the processing overhead

involved in generating ISAR images of the model during the conversion process.

� Genetic algorithm based �ne-tune method to allow low, medium or high res-

olution images to be processed easily.

� Model reduction using a genetic algorithm to reduce the processing overhead

involved in optimising the model structure. It allows the designer to trade

between the model size and the �delity of reproduction.

The process has been applied successfully to a real two-dimensional image and a

simulated three-dimensional image.

7.3. Item 2 { Integration into engagement scenario

Two seeker models have been created for use with a synthetic missile in simulated en-

gagements. These models have been successfully integrated into the object-oriented

engagement model software (see [65] for code). Trials on the two seekers have estab-

lished that the trial miss distance distribution for the amplitude comparison seeker

is compact, while the the phase comparison seeker has a long-tailed distribution.

The miss distance distributions appear to be in
uenced mostly by the e�ects of

glint. The contribution of thermal noise to the miss distance is small.

7.4. Item 3 { Establishing model �delity

The reduction factors that can be applied to models and still retain a high-�delity

representation have been established. It has been determined that reducing the

model complexity to give a K{S signi�cance of � = 0:9 for the radar cross section

pattern, will not signi�cantly a�ect the performance of the missile against the target.

The use of a signi�cance level of � = 0:9 for the image conversion process has been

justi�ed. A high-�delity reduced model has been produced to allow the target

manoeuvre detection trials to be performed with minimal computational overhead.
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7.5. Item 4 { Target manoeuvre detection using glint

The characteristics of the bore-sight error signal have been established. A method

for extracting target manoeuvre information from the patterns of glint spikes has

been proposed. A manoeuvre detector based on the theory has been implemented. A

fuzzy-logic approach was taken for its ease of application and simplicity. Trials of the

fuzzy-logic manoeuvre detector have shown that even the crude, proof-of-principle

model is capable of outstanding reliability and performance. The technique forms

a very attractive solution to the problem of target manoeuvre detection in radar

guided homing missiles.

7.6. Future Work

Important areas of work where further investigation is required have been identi�ed.

� Research into methods for tuning the evolutionary algorithms used for model

extraction. Some advances have been made towards optimally tuned PBIL

algorithms but tuning genetic algorithms can be di�cult.

� Further research into the e�ects of population size on the ability of evolutionary

algorithms to �nd global optima. It has been established that for PBIL algo-

rithms with high learning rates, the probability of �nding the global optimum

follows a binomial distribution. Genetic algorithms need to be investigated

and the general case for PBIL needs to be established.

� Investigations into glint reduction and �ltering techniques. Frequency and

angular diversity methods could be combined with fuzzy-logic and arti�cial

neural network techniques to provide an adaptive solution.

� Further research into target manoeuvre detection using target glint. The use

of extended Kalman �lters with fuzzy-logic/arti�cial neural networks for ex-

tracting manoeuvre information from the glint signal may prove fruitful. It

may be possible to use target manoeuvre information to augment the glint

�ltering process.

� Research into data fusion from multiple sensors for target manoeuvre detec-

tion. Manoeuvre detection using glint is practical for medium and long range,

but is more di�cult at short ranges. Conversely, optical detectors perform

best at short and medium ranges. A hybrid system would perform better in a

wider range of engagement scenarios and may be able to improve performance

in the presence of countermeasures such as 
ares or cha�.
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A. Quaternions

A.1. Introduction

Quaternions were discovered by Sir William Rowan Hamilton in October 1843. The

quaternion is a four dimensional complex number, where the complex part is de�ned

by

i2 = j2 = k2 = ijk = �1
Dot and cross products of vectors were discovered as part of the quaternion product.

The quaternion is an extension of the usual complex form a+jb, where j =
p�1,

Q = a+ ib+ jc+ kd

where i2 = j2 = k2 = �1 and ij = �ji = k, jk = �kj = i and ki = �ik = j and

a, b, c and d are real. This form of representation was referred to by Hamilton as

Standard Quadrinormal Form [83].

The quaternion may also be represented in a form analogous to Euler's Equation

for the imaginary exponential [84]

me�(i�+j�+k
)

where m is the magnitude of the quaternion, � is a rotation angle and [ � � 
 ]

is a unit vector de�ning an axis of rotation, ie. �2 + �2+ 
2 = 1. The Euler form of

the equation may also be represented by

m(cos (�) + (i�+ j� + k
) sin (�))

Quaternions are normally represented as four component vectors,

[ a [ b c d ] ]

where a represents the real part of the quaternion and [ b c d ] the imaginary

parts. The components are often expressed in a vector form,

~q = [a; b]

where ~q is the notation for a quaternion1 and b represents the imaginary part of the
quaternion, expressed as a vector.

1
q and _q are sometimes used in other papers.
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A.2. Arithmetic

The following rules apply to quaternion arithmetic for the set of all quaternions,

Q [83]:

1. Addition:

1.1. Closure: if P;Q 2 Q then P +Q 2 Q
1.2. Commutativity: P +Q = Q + P for all P;Q 2 Q
1.3. Associativity: (P +Q) +R = P + (Q+R) for all P;Q;R 2 Q
1.4. Identity: There is a 0 2 Q such that 0 + P = P + 0 = P

1.5. Inverse: For any P 2 Q there exists a (�P ) 2 Q such that P + (�P ) =
(�P ) + P = 0

2. Multiplication:

2.1. Closure: If P;Q 2 Q then PQ 2 Q
2.2. Associativity: (PQ)R = P (QR) for all P;Q;R 2 Q
2.3. Identity: There is a 1 2 Q such that 1P = P1 = P

2.4. Inverse: If P 6= 0, then there is a P�1 such that PP�1 = P�1P = 1

3. Distributivity:

P (Q+R) = PQ+ PR and (Q+R)P = QP +RP for each P;Q;R 2 Q

4. No zero divisors: If PQ = 0, then either P = 0 or Q = 0.

A.3. Magnitude, Conjugate and Inverse

If we have the quaternion

~q = [a; b]

then its magnitude is given by

m = j~qj =
q
a2 + b � b =

q
~q � ~q

The conjugate is the original quaternion but with its vector part negated,

~q� = [a;�b]

and the inverse is the conjugate divided by the magnitude squared

~q�1 =
~q�

m2
=

~q�

~q � ~q
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A.4. Operators

The quaternion dot product may be de�ned for two quaternions ~q = [w; (x; y; z)]
and ~p = [a; (b; c; d)] as

~q � ~p = wa+ xb + yc+ zd

The quaternion product of two quaternions ~p = [po; p] and ~q = [qo; q] may be de�ned

by

~p~q = [poqo � p � q ; poq + pqo + p� q]

where `�' and `�' imply the vector dot and cross product operations respectively.

A.5. Rotations

Quaternion rotation of vectors is described by the transformation

[0; (x0; y0; z0)] = ~q[0; (x; y; z)]~q�

where (x; y; z) is the vector to be rotated, (x0; y0; z0) is the rotated vector and

~q = [cos (�=2) ; [�; �; 
] sin (�=2)]

with j~qj = 1 and � de�ning the required rotation angle and [�; �; 
] j�2+�2+
2=1

de�ning the axis to rotate around. The vector (x; y; z) is e�ectively turned into

a quaternion with a zero scalar part to allow the rotation to be evaluated. The

resulting quaternion will also have a zero scalar part.

Alternatively, a unit quaternion [w; (x; y; z)] may be converted into matrix form

M =

0
B@

1� 2y2 � 2z2 2xy + 2wz 2xz � 2wy

2xy � 2wz 1� 2x2 � 2z2 2yz + 2wx
2xz + 2wy 2yz � 2wx 1� 2x2 � 2y2

1
CA

If ~q = me�(i�+j�+k
), then the quaternion product
p
~q[0; (x; y; z)]fp~qg� will rotate

by an angle � about unit axis (�; �; 
) and scale by a factor m.[85]



B. Truth Models

This appendix describes the single-point, 50-point and 100-point truth models. The

high-�delity 27-point model that was derived from the 50-point model is also de-

tailed. The models are designed to be used within a suite of MATLAB programmes

for radar cross section simulation. The models are held as N � 6 arrays, where each

row de�nes one of N scatterers. The format for each row is as followsh
x y z Magnitude Phase �

i

where x, y and z de�ne the scatterer position and � is de�ned by

� =

(
1 , scatterer active

2 , scatterer passive

The returned echo voltage, �, from an n{point scattering centre model may be found

using equation B.1.

� =
nX
p=1

ap
p
S

(
p
4�dp)

�p e
j

�
2��pdp

�
+�p

�
(B.1)

Where ap is the magnitude of scatterer p, S is the radar source power,

dp is the distance from the view point to scatter p, � is the wavelength

and �p is the phase of scatterer p relative to the radar.

Table B.1 de�nes the one point truth model. Distance is in metres, magnitude

is
p
� in metres and phase in radians. Tables B.2 and B.3 de�nes the 50-point truth

model, and tables B.4, B.5 and B.6 de�ne the 100-point truth model. Table B.7

de�nes the twenty seven point model that was used for the target manoeuvre detec-

tion trials in chapter 6. The model was created by the �delity reduction trials on

the 50-point model detailed in chapter 5.

x y z Magnitude Phase Ac./Pa.

0 0 0 29.77 0 2

Table B.1: 1-point truth model
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Scatterer x y z Magnitude Phase Ac./Pa.

1 10.00 0.00 0.00 1.75 0 2

2 4.80 3.15 0.20 1.94 0 2

3 2.50 9.50 0.60 3.74 0 2

4 -1.50 1.00 -0.11 4.72 0 2

5 -1.50 -1.00 -0.10 4.28 0 2

6 2.50 -9.55 0.60 4.09 0 2

7 4.80 -3.20 0.20 1.93 0 2

8 -6.40 0.00 3.60 8.54 0 2

9 -9.00 0.10 0.00 6.77 0 2

10 -6.00 -0.54 -0.10 1.88 0 2

11 10.80 -0.27 -0.57 3.08 0 2

12 4.65 2.66 0.56 6.34 0 2

13 1.78 8.77 1.42 4.22 0 2

14 -0.61 1.57 -0.61 2.93 0 2

15 -1.68 -1.09 0.62 5.50 0 2

16 1.76 -9.85 0.54 4.59 0 2

17 5.57 -3.30 0.21 4.68 0 2

18 -7.22 0.62 3.80 6.58 0 2

19 -9.68 0.96 0.64 6.36 0 2

20 -6.86 -0.24 0.41 5.68 0 2

21 9.58 0.43 -0.02 6.60 0 2

22 4.87 3.75 0.54 1.44 0 2

23 2.53 9.91 0.96 2.97 0 2

24 -2.29 1.48 -0.71 2.10 0 2

25 -1.67 -1.96 0.73 3.43 0 2

26 2.65 -8.78 1.33 5.88 0 2

27 5.55 -3.15 0.98 2.93 0 2

28 -6.52 -0.07 3.69 3.12 0 2

29 -8.54 -0.77 -0.72 5.38 0 2

30 -5.26 -0.11 -0.20 2.43 0 2

31 9.42 -0.16 0.26 1.89 0 2

32 5.80 3.51 -0.37 5.18 0 2

33 1.81 9.86 0.03 5.23 0 2

34 -1.24 0.41 -0.95 2.82 0 2

35 -1.27 -0.33 -0.32 1.88 0 2

36 1.50 -9.13 1.50 1.29 0 2

37 3.80 -2.54 1.10 0.08 0 2

38 -5.85 -0.81 3.38 1.28 0 2

39 -8.55 -0.74 -0.46 6.55 0 2

40 -6.36 -0.01 0.28 1.63 0 2

Table B.2: 50-point truth model
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Scatterer x y z Magnitude Phase Ac./Pa.

41 10.64 -0.80 0.20 4.69 0 2

42 4.07 2.59 -0.35 0.95 0 2

43 2.30 9.77 0.24 1.08 0 2

44 -1.30 1.39 0.29 3.24 0 2

45 -2.15 -0.41 -0.87 5.73 0 2

46 3.16 -9.16 1.13 5.42 0 2

47 4.12 -2.69 0.25 3.71 0 2

48 -5.42 0.34 3.71 4.93 0 2

49 -9.49 0.37 0.18 2.11 0 2

50 -6.53 -1.43 -0.44 0.90 0 2

Table B.3: 50-point truth model
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Scatterer x y z Magnitude Phase Ac./Pa.

1 4.05 -0.57 3.21 3.10 0 2

2 1.63 -0.60 1.75 2.53 0 2

3 4.57 1.27 -5.01 1.93 0 2

4 -3.41 -4.48 3.00 0.08 0 2

5 -4.53 1.93 10.50 0.60 0 2

6 1.37 2.04 3.34 0.95 0 2

7 0.20 -3.42 3.43 1.76 0 2

8 -3.81 0.14 -1.10 0.33 0 2

9 -0.27 -1.43 7.93 0.57 0 2

10 -6.74 3.40 -3.18 0.13 0 2

11 2.71 0.54 7.10 0.27 0 2

12 1.02 3.04 1.43 0.44 0 2

13 2.66 -5.91 4.36 1.94 0 2

14 4.70 0.88 -5.01 0.15 0 2

15 -2.65 -4.82 0.57 1.06 0 2

16 -1.81 0.83 -3.03 2.26 0 2

17 -0.39 -2.72 0.21 1.77 0 2

18 2.75 2.55 -1.34 1.22 0 2

19 4.26 -3.23 5.90 5.07 0 2

20 1.57 0.32 2.47 0.12 0 2

21 -0.22 0.59 10.54 0.79 0 2

22 4.60 -0.92 4.99 0.54 0 2

23 -1.61 6.72 1.32 1.09 0 2

24 5.71 4.95 0.40 1.55 0 2

25 -4.73 -2.65 -8.40 0.75 0 2

26 -0.94 -7.97 4.58 3.66 0 2

27 -1.61 -8.95 -0.58 0.34 0 2

28 -9.24 -3.44 -0.59 1.27 0 2

29 -3.02 -8.51 1.13 2.36 0 2

30 -0.56 -0.98 0.04 1.00 0 2

31 -1.85 2.60 2.62 2.35 0 2

32 3.07 5.93 -11.06 2.49 0 2

33 -2.11 2.28 -3.68 1.26 0 2

34 2.56 -2.69 -1.60 3.50 0 2

35 -1.67 -5.51 4.96 0.09 0 2

36 -4.40 4.88 1.97 1.54 0 2

37 4.49 -0.69 8.23 4.47 0 2

38 1.58 11.24 -6.12 0.19 0 2

39 -4.06 -0.26 1.59 2.28 0 2

Table B.4: 100-point truth model
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Scatterer x y z Magnitude Phase Ac./Pa.

40 1.03 -2.29 -1.36 1.30 0 2

41 -0.14 -2.15 -9.15 1.31 0 2

42 -1.60 5.76 1.23 1.16 0 2

43 -2.44 -2.76 6.23 0.56 0 2

44 2.04 1.27 -2.64 3.89 0 2

45 4.10 9.34 0.50 2.66 0 2

46 -1.40 2.40 -1.73 1.53 0 2

47 5.66 0.97 3.03 2.19 0 2

48 1.29 4.79 8.13 0.42 0 2

49 4.08 3.64 -6.02 0.54 0 2

50 -2.11 -0.65 2.71 1.03 0 2

51 2.18 1.78 -2.61 2.08 0 2

52 -7.22 -0.90 5.27 1.38 0 2

53 8.78 -0.32 8.10 2.25 0 2

54 -0.83 -3.27 -1.13 2.78 0 2

55 2.86 -0.57 -9.44 0.17 0 2

56 5.01 -0.84 -2.73 1.07 0 2

57 3.09 3.24 7.39 2.03 0 2

58 -4.48 -0.76 -1.31 0.50 0 2

59 -1.09 -0.19 0.45 1.07 0 2

60 -1.16 5.53 -0.84 2.03 0 2

61 1.54 3.88 1.16 0.46 0 2

62 0.62 -4.25 -4.20 1.20 0 2

63 0.32 9.61 2.04 3.73 0 2

64 7.83 6.59 3.10 3.84 0 2

65 7.84 -4.16 -4.38 2.43 0 2

66 8.97 0.79 0.01 2.58 0 2

67 4.55 1.79 -0.96 2.36 0 2

68 -3.56 0.35 -2.37 0.14 0 2

69 -7.00 1.59 9.26 0.47 0 2

70 -3.04 -2.70 -0.90 1.69 0 2

71 2.83 1.97 -2.81 3.22 0 2

72 -0.26 -0.16 3.05 0.54 0 2

73 -0.32 2.89 -2.96 1.59 0 2

74 -0.66 3.80 -4.34 0.62 0 2

75 5.09 1.51 3.87 0.31 0 2

76 4.10 0.67 5.05 0.85 0 2

77 -0.47 6.17 1.47 1.54 0 2

78 2.09 1.20 -0.90 0.15 0 2

79 6.22 0.60 -1.07 1.58 0 2

Table B.5: 100-point truth model
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Scatterer x y z Magnitude Phase Ac./Pa.

80 -0.88 -0.34 -2.76 2.31 0 2

81 -11.46 5.96 1.79 3.34 0 2

82 4.27 -2.08 2.97 0.85 0 2

83 -12.18 1.26 5.06 0.89 0 2

84 0.74 5.14 -8.52 0.80 0 2

85 -0.33 -5.90 -8.18 0.01 0 2

86 -1.25 -3.99 -2.47 0.70 0 2

87 -2.69 2.08 0.76 0.10 0 2

88 2.41 2.54 -4.50 1.62 0 2

89 5.11 0.41 -1.98 0.15 0 2

90 2.24 2.21 3.30 1.68 0 2

91 1.74 -6.17 1.38 1.50 0 2

92 -0.60 -1.70 -2.53 2.36 0 2

93 3.97 -3.98 -1.89 0.71 0 2

94 2.31 -2.85 1.46 3.49 0 2

95 -8.56 -6.70 9.92 0.50 0 2

96 1.41 1.05 4.33 2.95 0 2

97 1.94 -1.19 3.52 4.47 0 2

98 -1.95 2.57 1.29 0.52 0 2

99 -0.24 -6.91 -3.73 2.38 0 2

100 -2.66 -3.58 -4.36 1.76 0 2

Table B.6: 100-point truth model
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Scatterer x y z Magnitude Phase (Radians) Ac./Pa.

1 2.50 9.50 0.60 3.79 -0.01125 2

2 -1.50 1.00 -0.11 4.69 0.00093 2

3 -1.50 -1.00 -0.10 4.22 -0.01354 2

4 2.50 -9.55 0.60 4.05 0.00108 2

5 -6.40 0.00 3.60 8.56 0.00047 2

6 -9.00 0.10 0.00 6.78 0.00981 2

7 4.65 2.66 0.56 6.29 -0.02221 2

8 1.78 8.77 1.42 4.21 0.02974 2

9 -1.68 -1.09 0.62 5.48 0.00782 2

10 1.76 -9.85 0.54 4.58 -0.00976 2

11 5.57 -3.30 0.21 4.65 0.01484 2

12 -7.22 0.62 3.80 6.58 0.00921 2

13 -9.68 0.96 0.64 6.32 0.00587 2

14 -6.86 -0.24 0.41 5.74 0.01305 2

15 9.58 0.43 -0.02 6.80 0.00001 2

16 -1.67 -1.96 0.73 3.42 -0.03191 2

17 2.65 -8.78 1.33 5.95 -0.00636 2

18 -8.54 -0.77 -0.72 5.35 0.00530 2

19 5.80 3.51 -0.37 5.19 0.01741 2

20 1.81 9.86 0.03 5.26 0.02003 2

21 -8.55 -0.74 -0.46 6.62 0.02005 2

22 10.64 -0.80 0.20 4.71 0.00321 2

23 -1.30 1.39 0.29 3.26 -0.00696 2

24 -2.15 -0.41 -0.87 5.82 0.00420 2

25 3.16 -9.16 1.13 5.48 0.02065 2

26 4.12 -2.69 0.25 3.68 0.05130 2

27 -5.42 0.34 3.71 4.88 -0.03022 2

Table B.7: 27-point �tted model



C. Constrained Least Squares Fitting

The complex weightings of the individual scatterers in a model must be chosen so the

correct �eld pattern can be generated. If the �eld pattern describing the N target

radar cross section datum is denoted by a vector go and the M model amplitudes

and phases are described by a vector f , equation C.1 describes a linear operator T
that relates the two [86].

[T ]N�M [f ]M�1 � [go]N�1 (C.1)

Equation C.2 de�nes the standard unconstrained Least Squares solution, where T �

indicates the complex conjugate and T T indicates matrix transpose.

f = [[T �]TT ]�1[T �]Tgo (C.2)

Unfortunately, the simple least squares method can give wild over-estimates for

scatterer magnitude values in the model. A better method is to use a constrained

least squares approach [86].

If �i and �i denote the ith Eigen vector and Eigen value of the matrix [T �]TT ,
ie.

[[T �]TT ]�i = �i�i

The constrained least squares approximation of f is de�ned by equation C.3.

f =
MX
i=1

ci

(�i + �)
�i (C.3)

where

ci = [��]T [T �]Tgo

The value � may be found using the Newton{Raphson iterative method [87, Page

55]. Equation C.4 details the calculation, where C is the applied constraint. A

starting value of �0 = 1 is suggested. Care must be taken if �0 � 0 as the function

is discontinuous below zero and the results of the iterative method are unpredictable.

A possible solution is to replace negative values of �0 with a positive random number,

typically in the range [1; 100]. The algorithm will then re-start at a random position.

�1 = �0 �
0
@C �

PM
i=1

jcij
2

(�i+�0)2

2
PM
i=1

jcij2

(�i+�0)3

1
A (C.4)

The square of the norm of the vector f , as de�ned in equation C.5, is limited by

the value of the constraint C.

jjf jj2 =
MX
i=1

jfij2 (C.5)
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If the model is being used to re-construct an ISAR image, the required constraining

value for jjf jj2, ie. C, is found by calculating the squared norm of the image. Equa-

tion C.5 is applied to the image with fi representing each picture element. As the

image intensity is determined by scatterer amplitudes, the squared norm should be

approximately the same as the squared norm of the model.



D. Statistical Tests

D.1. Introduction

The purpose of both statistical tests is to determine whether two independent groups

of data have been drawn from the same distribution.

D.2. Kolmogorov-Smirnov Statistical Test

The Kolmogorov-Smirnov (K{S) statistical test [88, Pages 472{475] gives a �gure of

merit for the similarity between the cumulative distribution functions of two sets of

data. The K{S number, �KS, may be related to a probability that the sets of data

are drawn from the same distribution.

Taking two Cumulative Distribution Functions S1 and S2 of size N1 and N2

respectively, the Kolmogorov{Smirnov statistic is as shown in equation D.1.

�KS =

s
N1N2

N1 +N2

�
max

�1<x<1
jS1(x)� S2(x)j

�
(D.1)

In the case of the null hypothesis `sets of data drawn from the same distribution',

the distribution of the K{S statistic can be calculated giving the signi�cance of any

observed non-zero value of �KS.
The signi�cance may be calculated using equation D.2, which is monotonic with

limiting values QKS(0) = 1 and QKS(1) = 0.

QKS(�) = 2
1X
j=1

(�1)j�1e�2j2�2 (D.2)

In terms of this function, the signi�cance level of an observed value of �KS (as

disproof of the null hypothesis) is given approximately by

Prob(�KS > observed) = � = QKS(�KS)

The approximation becomes asymptotically accurate as N becomes large. Typically

N > 20 is acceptable. Table D.1 summarises some commonly used signi�cance levels

(�) and their K{S number equivalents. The signi�cance levels are the probability of

a type one error, ie. the null hypothesis is rejected erroneously.

D.3. Mann-Whitney Statistical Test

The Mann-Whitney test (sometimes called Wilcoxon Test) uses ranking methods to

produce an indication of how the sets of data overlap. The test statistic is normally
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% Signi�cance, � K{S number, �KS

99% 0.4410

95% 0.5196

90% 0.5712

10% 2.2239

5% 1.3580

1% 1.6720

Table D.1: Typical Kolmogorov{Smirnov test signi�cance levels

distributed for su�cient numbers of observations. The test is performed on the two

sets of data as follows.

1. Label the two sets of data X and Y , having n and m members respectively.

Set X should be the smallest set, ie. n � m.

2. Put the two sets of data together to form a single X + Y group with (n+m)

members.

3. Rank the (n + m) data with rankings 1 to (n + m), with the smallest value

getting rank 1 and the largest rank (n +m).

4. If R(Xi) denotes the rank of Xi, equation D.3 gives the test statistic.

U =
nX
i=1

R(Xi)� n(n + 1)

2
(D.3)

Thus, if the population X lies totally below population Y , U = 0. While if X

lies totally above Y , U = nm. If n;m > 20, the test statistic asymptotically

approximates the normal distribution with the mean and standard deviation shown

in equation D.4.

Uz =
U � �

�

� =
nm

2

� =

s
nm(n +m + 1)

12
(D.4)

Table D.2 summarises some commonly used signi�cance levels (�) and their Mann-

Whitney Uz equivalents. The signi�cance levels are the probability of a type one

error, ie. the null hypothesis is rejected erroneously.
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% Signi�cance, � Mann-Whitney Statistic, Uz

10% 1.283

5% 1.645

1% 2.327

Table D.2: Typical Mann-Whitney test signi�cance levels



E. Population Based Incremental

Learning

E.1. Introduction

This appendix covers advances in tuning the search parameters of Population Based

Incremental Learning (PBIL) algorithms. The basic PBIL algorithm has been en-

hanced to include automatic run termination and optimum setting of some control

parameters. In many cases, only one parameter now needs to be tuned for e�cient

operation of the algorithm. A simple binary-tree structure is also described for

storing past chromosomes, giving around a 30% processing reduction for complex

objective functions. The enhanced PBIL algorithm may be more easily applied to

a wide range of engineering applications. Example MATLAB routines are included

to demonstrate the simplicity of the algorithms.

Population based incremental learning algorithms are considered to be among

the simplest evolutionary optimisation techniques currently available. They are

able to �nd optimum solutions to problems which are multi-modal or lack gradient

information. They have been shown to outperform conventional deterministic and

stochastic optimisation techniques on a wide range of problems and yet are simple

to code [89, 90].

The algorithmwas �rst described in 1994 [89] and has been improved recently [91].

This algorithm has three control parameters; population size (p), learning rate (l)

and forgetting factor (f). The algorithm presented here has been enhanced further

by automatically terminating the run when the process has converged on a single

solution. One new operating parameter has been introduced into the algorithm to

control the algorithm termination. This parameter has been called the termination

factor and is denoted by � . The forgetting factor is now calculated from a more intu-

itive parameter that allows the analysis of the algorithm operation to be simpli�ed.

This parameter has been called the search rate and is denoted by s.

Empirical values have been derived for two of the four parameters and empirical

conditions for optimality have been established for a third. The remaining parameter

of population size is used to control the search. Small populations yield rapid but

crude results, large populations will give more accurate results but at a processing

cost. The processing overheads can be reduced by storing previous chromosome

structures and their objective values. A simple technique based on binary space

partition trees is described.
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E.2. Algorithm operation

The PBIL algorithm is a stochastic guided search process that obtains its direc-

tional information from the previous best solutions. The problem parameters are

represented as a binary chromosome of total length b bits. Each variable is coded in

a binary form and then concatenated to any previous parameters to form a single

chromosome.

A prototype vector (P) is used to bias the generation of bits in a population

of chromosomes. The prototype vector has b elements, one for each bit location.

At each location, the prototype vector holds the probability that the corresponding

bit is a `1'. Each location is initially set to 0:5 which corresponds to unbiased bit

generation. A population of candidate solutions is generated using the prototype

vector to bias the generation of bits. For each chromosome in the population, the

bits are selected by generating a uniformly distributed random number in the range

[0,1] for each bit. The chromosome bit is set to one if the random number is less than

the corresponding prototype vector element, zero otherwise. All the chromosomes

are then evaluated by the objective function and the best identi�ed.

Equation E.1 is then applied to the prototype vector to incorporate the direc-

tional information of the best chromosome. This equation is a variant of the process

described in [91].

Pn+1 = ((1� l)Pn + l �CB)(1� f) +
f

2
(E.1)

Where CB is the best chromosome and consists of a pattern of ones and zeros.

Figure E.1 shows the changes in the prototype vector during a typical opti-

misation run. The learning mechanism in equation E.1 leads to a change in each

prototype vector element level, that follows an exponential pro�le. In order to inves-

tigate the algorithm further, the nature of the exponential function must be known.

To establish the function characteristics, if we take the speci�c case of CB = 0, the

rate of fall of each prototype vector element, P , is given by equation E.2.

Pn =
1

2

 
f(1� an)

1� a
+ an

!
(E.2)

where

a = (1� l)(1� f)

and n is the generation number

The level to which each element of the prototype vector converges is found by

taking the limit of equation E.2 at n = 1 to give equation E.3, which de�nes the

search rate, s. As the pattern of convergence is symmetrical about P = 0:5, the

convergence properties for CB = 1 may be determined by observation as 1 � Pn.

The search rate, s, is shown graphically on �gure E.1. The search rate may also

be considered as the probability of selecting a one instead of a zero element after

an in�nite number of generations. Equation E.4 is used to calculate the forgetting

factor, f for any given value of s.

s = P1 =
f

2(1� a)
(E.3)
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Figure E.1: Typical prototype vector plot (9 bits in P)
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f =
2sl

1� 2s(1� l)
(E.4)

If the search rate is set to zero, the elements of the prototype vector can converge

to either 0 or 1. Once this terminal value has been reached, if the element has

converged in the wrong direction, there is no way for it to be corrected. Increasing

the search rate prevents the prototype vector elements converging exactly to 0 or 1.

The search rate is analogous to mutation rate in genetic algorithms. The higher the

value of s, the less likely the algorithm is to get stuck in local optima.

The algorithm is allowed to run until all the elements are within a bound t of the

�nal convergence level of s or (1�s) as appropriate. The bound t is shown graphically
in �gure E.1. If we de�ne t as shown in equation E.5, t varies dynamically with s. We

can now calculate the minimum number of generations required for the algorithm

to terminate, nmin, shown in equation E.6.

t = (0:5� s)� (E.5)

Pn = s+ t
f(1�an)

2(1�a)
+ an

2
= f

2(1�a)
+
�
0:5� f

2(1�a)

�
�

f + an((1� a)� f) = f + ((1� a)� f)�
an = �

nmin = log(�)

log(a)

(E.6)

Equation E.7 gives the minimum number of function evaluations, Fmin.

Fmin = pnmin (E.7)

The termination condition may be summarised as shown in equation E.8.

max(0:5� jP� 0:5j) < s+ (0:5� s)� (E.8)

A convenient empirical setting for � is � = 0:1. Reducing � will extend the

length of the run and increasing � will increase the risk of false termination. If � is

increased, at most nmin generations can be cut from the runtime.

Trials have shown that the �nal convergence phase occurs most often in the region

where there should be, on average, at least one copy of the optimum chromosome

in the population. This conditions are met when equation E.9 is satis�ed.

p
Y
P > 1 (E.9)

It must be noted that for the PBIL algorithm to converge on a �nal solution, each

gene should in
uence the objective function. If inverting a gene value has no e�ect,

the associated prototype vector element will drift randomly around the 0:5 aver-

age value. It has been demonstrated that given the condition of every gene having

in
uence, the algorithm will eventually converge on a solution [92]. As the �nal con-

vergence level of the prototype vector is limited by s, the condition in equation E.10
therefore has to be satis�ed for algorithm convergence.

p >
1

(1� s)b
(E.10)
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It has been found through trials and observations that the minimum number of

function evaluations required to reach convergence is governed by the probability of

a chromosome being better than average, the search rate, and the number of bits.

This probability, P (Chrom. > Aver.), appears to be approximately 0:5 for most

real-world problems.

The `sum of bits' problem (demonstrated in section E) with an even number of

bits has a probability P (Chrom. > Aver.) < 0:5. The lower probability only has

signi�cant in
uence for low numbers of bits. The probability may be related to

population size as described in equation E.11.

popt =
1

P (Chrom. > Aver.)(1� s)b
(E.11)

This e�ect is demonstrated graphically in �gure E.2. The minimum number of

function evaluations for any given value of s occurs at Popt. If s is increased, Popt
will increase, following the linear portion of the curve. Thus an optimum value of s

may be found for any population size and thus the corresponding forgetting factor

calculated. Using this philosophy, as population size is increased, s increases and so

the chances of converging on a local optima reduces. The lines in �gure E.2 are an

average of 100 trials at each population size under the values of s shown and using

the source code in section E.

Thus we may operate the algorithm by choosing a population size and then cal-

culating the maximum value of s that minimises the number of function evaluations.
Equation E.12 details this.

sopt = 1� (2=p)1=b (E.12)

A population size of 5 with an optimum value for s (0 < s < 0:5) is often a

good starting point. It is wise to start with low population sizes to assess how many

function evaluations are required and then increase p to achieve su�ciently accurate

results. By combining equations E.4, E.6, E.7 and E.12, equation E.13 gives the

minimum number of function evaluations required for operation with s = sopt.

Fmin = p �

2
66666

log(�)

log

�
1� l

1�2(1�l)(1�(2=p)1=b)

�
3
77777

��������
s=sopt

(E.13)

where dxe denotes the smallest integer � x

Figure E.3 shows the results of proving trials for a 7 bit sum of chromosome

problem, where the theoretical minimum is denoted by ` .. ', actual minimum by ` -

- ', mean by ` { ' and maximum by ` .- '. The results were generated from a PBIL

algorithm with � = 0:1, l = 0:1 and s = sopt and 1000 trials run at each population

size. The data for the minimum number of function evaluations match the theory

well but it is unknown how the other curves are related. In practice, the algorithm

will be operating in the region p� 2b where the curve is almost linear. The details

of this near linear portion of the curve are speci�c to the objective function used.

The learning rate (l) determines the �nal accuracy of the solution. The lower

the learning rate, the less likely it is that the algorithm will converge on a local

optimum. Baluja [89, Page 17] observed that:
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If the learning rate is high, the initial populations generated will largely

determine the focus of the search, without enabling the algorithm to

explore the function space. If the function space does not contain local

optima, a high learning rate may work well. However, if local minima

could be a problem, lower learning rates allow greater exploration.

Changing the learning rate directly a�ects the gradient of the near linear por-

tion of the curves. Doubling l will approximately halve the gradient etc. (following

equation E.6 as the gradient). Therefore as l is increased, the number of func-

tion evaluations reduces but the probability of premature algorithm convergence

increases. An empirical range of 0:1 � l � 0:4 has been found satisfactory for most

problems.

E.3. Binary Space Partition Tree for Chromosome Storage

By their very design, evolutionary algorithms can be ine�cient with objective func-

tion calculations. In the �rst few generations of the algorithm, all of the chromo-

somes evaluated are likely to be di�erent. As the population of chromosomes con-

verge toward a solution, a small set of chromosomes may be evaluated repeatedly. If

the objective function has heavy processing requirements, much processor time can

be wasted. A variant of the binary space partition tree described in Foley et. al. [62,

Pages 675{680] may be used to reduce the number of wasted calculations. The

following algorithm may be applied to most evolutionary algorithm techniques.

The tree is used to store chromosome patterns and their corresponding objective

values. In this variant of the standard tree, the chromosomes themselves are used as

the partitioning structures. The tree is generated by inserting each new chromosome

as its objective value is required by the evolutionary algorithm. The very �rst

chromosome is treated as a special case and simply inserted into the �rst location

in the tree. Its objective value is then calculated and stored in the tree too. Two

extra data values are held along with each chromosome and objective. Initially, the

data items are both zero, but are intended for storing pointers to the left and right

branches of the tree.

Subsequent chromosomes are added to the tree only if they are not already

present. The new chromosome is compared to the �rst chromosome in the tree.

Because the number of bits in the chromosome may be much larger than the machine

precision, the chromosomes are compared gene by gene. Starting from the left,

each gene in the new chromosome is compared to the corresponding gene of the

chromosome in the tree. If these genes are the same, the next pair of genes are

tested. The �rst test that �nds a di�erence in the chromosomes is used as the

decision variable. If the gene in the new chromosome is less than the gene in the

tree, the new chromosome is classed as being less than the tree chromosome. This

algorithm is demonstrated in �gure E.4. If the new chromosome is classed as smaller,

the left branch of the tree is investigated. If it is greater, the right branch is chosen.

The tree is descended in a recursive fashion until either a matching chromosome is

found or a chromosome with no sub-tree to follow is encountered. If a match is found,

the previously recorded objective value is returned to the evolutionary algorithm.
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Figure E.4: Example chromosome comparison

If no match is found before the tree ends, an objective value is calculated for the

chromosome. The objective is inserted into the tree along with the chromosome,

and the index to the storage location recorded in the appropriate pointer of the

last chromosome found in the tree. This process is demonstrated in �gure E.5. If

the same chromosome is generated by the evolutionary algorithm again, it can be

retrieved quickly from the tree.

The tree structure is suited to both binary and integer chromosomes. Real

valued chromosomes are di�cult to store e�ectively as a tiny deviation in one gene

is enough to prevent the chromosome being matched. Generating the tree by using

the chromosomes as the partitioning structures may not lead to a very e�cient tree

structure though. A balanced tree has a uniform distribution of branches following

each node. The trees generated using this method will not be balanced and therefore

some look-up operations may be much more rapid than others. However, as the

evolutionary algorithm is stochastic in nature, the spread of the tree unlikely to

become excessively unbalanced.

If the objective is quick to calculate, it may be better not to use the tree. If

the objective is computationally expensive or requires heavy disk usage, in a typical

evolutionary algorithm, one third of the objective values may be returned from the

tree. Example MATLAB code for implementing the tree structure in the PBIL

algorithm is presented in section E.5

E.4. Conclusions

The enhancements to the algorithm reduce the tuning burden normally associated

with stochastic optimisation techniques. In most cases, only the population size

needs to be adjusted to trade repeatability against number of function evaluations.

The simplicity of the algorithm allows it to be applied to new problems rapidly and

can give excellent results with little or no tuning. The MATLAB code in section E.5

is a complete PBIL example where the function being optimised is the sum of the

bits in the chromosome. This function is multi-modal in nature. The whole pro-

gramme consists of 20 lines without the comments and should take approximately

180 generations to complete. Trials have shown that with a population of 10 in the
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example, the correct answer can be obtained about 95% of the time.

E.5. MATLAB example

% Enhanced Population Based Incremental Learning

% E.J.Hughes 14/11/97

%% user control parameters

maxgen=3000; % maximum no. of generations

b=101; % no. of bits in chromosome

l=0.1; % learning rate

p=10; % population size

%% set other control parameters

tau=0.1; % termination factor

s=1-(2/p)^(1/b); % search rate

f=2*s*l/(1-2*s*(1-l)); % forgetting factor

%% initialise

pv=0.5*ones(1,b);

pvx=zeros(maxgen,b);

%% main loop

for n=1:maxgen

%% generate population

chrom=rand(p,b)<(ones(p,1)*pv);

%% put objective here

obj=sum(chrom')'; % calculate sum of bits

[a,i]=max(obj); % i=index of best chromosome

%% update prototype vector and stop if converged

pv=((1-l)*pv+l*chrom(i,:))*(1-f)+f/2;

pvx(n,:)=pv;

if max(0.5-abs(pv-0.5))<(s+(0.5-s)*tau)

break; end

end

%% output results

[(pv>0.5) a]

plot(1:n,pvx(1:n,:)); % plot prototype vector

% Population Based Incremental Learning

% With Binary Space Partition Tree Enhancement

% for Objective Calculations

% E.J.Hughes 10/2/98

%% user control parameters

maxgen=3000; % maximum no. of generations

b=101; % no. of bits in chromosome

l=0.1; % learning rate

p=10; % population size

%% set other control parameters

tau=0.1; % termination factor

s=1-(2/p)^(1/b); % search rate

f=2*s*l/(1-2*s*(1-l)); % forgetting factor
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%% initialise

pv=0.5*ones(1,b);

pvx=zeros(maxgen,b);

%% Initialise BSP tree

bsp=zeros(maxgen*p,3+b);

curr_pos=1;

hit_cnt=0;

%% main loop

for n=1:maxgen

%% generate population

chrom=rand(p,b)<(ones(p,1)*pv);

%% To calculate objective:

obj=zeros(p,1);

for k=1:p

%% Check BSP tree first

ck=chrom(k,:);

pos=1;next=0;

objt=[];

while(isempty(objt))

kk=sign(ck-bsp(pos,4:3+b));

tst=kk(min(find(kk~=0)));

if isempty(tst)

objt=bsp(pos,3); %Chromosome exists

hit_cnt=hit_cnt+1;

tst=0;

end

next=bsp(pos,1+(tst==1)); % get next node

if(~next)&isempty(objt) % not found

%% put objective here

objt=sum(chrom(k,:)); % calculate sum of bits

bsp(curr_pos,3:3+b)=[objt ck];

if(curr_pos~=1)

bsp(pos,1+(tst==1))=curr_pos; % add to tree

end

curr_pos=curr_pos+1;

end

pos=next;

end

obj(k,1)=objt;

end

[a,i]=max(obj); % i=index of best chromosome

%% update prototype vector and stop if converged

pv=((1-l)*pv+l*chrom(i,:))*(1-f)+f/2;

pvx(n,:)=pv;

if max(0.5-abs(pv-0.5))<(s+(0.5-s)*tau)

break; end

end

%% output results

[(pv>0.5) a]

plot(1:n,pvx(1:n,:)); % plot prototype vector



F. Noise Approximations

F.1. Introduction

This appendix covers the derivation of the approximation used to divide two Gaus-

sian noise signals. A survey of existing literature and mathematical texts failed to

provide a solution to the problem and so an empirical approximation was found.

F.2. Derivation

An attempt was made to derive an analytical proof of the division of the two Gaus-

sian noise sources detailed in equation F.1. Where N(�; v) describes a Gaussian

source with mean � and variance v.

N(�1; v1)

N(�2; v2)
(F.1)

The following properties of noise distributions may be found from standard texts

(for example [93]); where D1(�; v) and D2(�; v) etc. describe noise sources with

an arbitrary distribution and mean � and variance v (the distribution D0 is not

necessarily the same as D).

1. D1(�1; v1)�D2(�2; v2) = D3(�1 � �2; v1 + v2)

2. �+D1(0; v) = D1(�; v)

3. aD1(�; v) = D1(a�; a
2v)

The property

D1(�1; v1)D2(�2; v2) = D4(�1�2; �
2
1v2 + �22v1 + v1v2)

may be derived from the above results.

The assumption that there exists an inverse that satis�es equation F.2 was made.

This assumption is obviously 
awed as the noise cannot be cancelled out by another

random distribution but it does provide a useful mathematical construction.

D(�; v)D(�; v)�1 = D(1; 0) (F.2)

The theoretical inverse shown in equation F.2 was calculated and is shown in

equation F.3.

D(�; v)�1 = D

 
1

�
;

�v
�2(�2 + v)

!
(F.3)
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The negative variance is nonsense as it would represent imaginary noise. Empirical

trials indicate that if the negative sign is removed, the equation does closely approx-

imate the reciprocal of a noise source, as long as all of the noise samples lie to one

side of zero, ie. j�j is large with respect to the variance v. Observations of the noise

distribution show that the noise is approximately Gaussian for large �.

Using equation F.3 with positive variance will yield equation F.4.

N(�1; v1)

N(�2; v2)
� N

 
�1

�2
;
�21v2 + �22v1 + 2v1v2

�22(�
2
2 + v2)

!
(F.4)

Empirical trials show that equation F.4 gives a good approximation to the quo-

tient of the two noise sources. Observations and trials have shown that equation F.5

gives an even better approximation to the noise. Figure F.1 shows a histogram

for the example equation N(0; 1)=N(10; 1) demonstrating that the result is approx-

imately Gaussian. The overlaid curve is for a normal distribution N(0; 0:01), as
provided by equation F.5. As �2 decreases, the distribution becomes very long-

tailed with large outliers. The region where �2 is low is also the region where glint

spikes occur. A proper solution to the quotient problem may provide an insight into

the probability distribution of the glint noise.

N(�1; v1)

N(�2; v2)
� N

 
�1

�2
;
�21v2 + �22v1 + v1v2

�22(�
2
2 + v2)

!
(F.5)
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Figure F.1: Example noise histogram (50 bins)



G. Target Manoeuvre Detection

Software

G.1. Introduction

This appendix details the MATLAB fuzzy-logic inference system modules and in-

cludes the software used for target manoeuvre detection. The source code is designed

using the MATLAB Fuzzy Logic Toolbox [82]. The following source code is detailed

in this appendix.

� Initialisation Code

� Detector Main Function

� Fuzzy Pre-Processor Module

� Fuzzy Combiner Module

� Fuzzy Detector Module

� Fuzzy Con�dence Module

G.2. Detail of the Stage-1 Pre-Processor module

Figure G.1 shows the top-level structure of the stage-1 module. The module is a

Sugeno type fuzzy inference system, where the outputs are functions of the input

variables. Figure G.2 shows the membership function for the range input. There

are no membership functions associated with the sn and sr inputs. There are four

rules in the system. They are as follows:

1. If (range is long) then (out = sn)

2. If (range is short) then (out = 100sr)

3. If (range is close) then (out = 30sr)

4. If (range is end) then (out = 10sr)

The membership function for the range and the levels of the gains in rules 2,3 & 4

have been chosen empirically by observation.

149
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Figure G.1: Block diagram of Stage-1 module
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Figure G.3: Block diagram of Stage-2 module

G.3. Detail of the Stage-2 Combiner module

Figure G.3 shows the top-level structure of the stage-2 module. The module is

a Mamdani type fuzzy inference system, where the outputs are membership func-

tions. Figure G.4 shows the membership function for the normal signal inputs and

�gure G.5 shows the membership function for the di�erentiated signals. Figure G.6

shows the membership function for the outputs.

There are eight rules in the system. They are as follows:

1. If (h is hi) or (v is hi) or (dh is hi) or (dv is hi) then (xl is no)

2. If (h is not hi) and (v is not hi) and (dh is not hi) and (dv is not hi) then (xl

is yes)

3. If (dh is not hi) and (dv is not hi) then (xh is no)

4. If (h is not hi) and (v is not hi) then (xh is no)

5. If (v is hi) and (dv is hi) then (xh is yes)

6. If (h is hi) and (dh is hi) then (xh is yes)

7. If (h is hi) and (dv is hi) then (xh is yes)

8. If (v is hi) and (dh is hi) then (xh is yes)

The membership functions have been chosen empirically by observation.
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Figure G.6: Membership function for the Stage-2 module outputs

G.4. Detail of the TMD Detector module

Figure G.7 shows the top-level structure of the TMD, target manoeuvre detector

module. The module is a Sugeno type fuzzy inference system. Figures G.8 and G.9

show the membership functions for the signal inputs. Figures G.10 and G.11 show

the membership functions for the feedback signals to control the hold and delay

times. Figure G.12 shows the membership function for the range input. There are

sixteen rules in the system. They are as follows:

1. If (xh is trip) and (holdi is o�) and (range is long) then (delay = 0:5)

2. If (xh is trip) and (range is long) then (hold = 10)

3. If (xh is trip) and (holdi is o�) and (range is med) then (delay = 1)

4. If (xh is trip) and (range is med) then (hold = 6)

5. If (xh is trip) and (holdi is o�) and (range is short) then (delay = 1:75)

6. If (xh is trip) and (range is short) then (hold = 4)

7. If (xh is trip) and (holdi is o�) and (range is close) then (delay = 2:5)

8. If (xh is trip) and (range is close) then (hold = 2)

9. If (holdi is o�) then (tmd = 0)(delay = 0) (hold = 0)

10. If (delayi is not o�) and (holdi is not o�) then (tmd = 0)

11. If (delayi is o�) and (holdi is not o�) then (tmd = 1)(delay = 0)
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Figure G.9: Membership function for the TMD module xh input
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12. If (xl is not hi) and (delayi is not o�) then (delay = delayi � 1)

13. If (xl is hi) and (holdi is not o�) then (hold = holdi � 1)

14. If (xl is not hi) and (xh is not trip) and (delayi is o�) then (hold = holdi)

15. If (xl is hi) and (holdi is o�) then (delay = 0)(hold = 0)

16. If (xl is hi) and (delayi is not o�) then (delay = 0) (hold = �holdi)
The membership functions and the levels for the turn-on delay and hold have been

chosen empirically by observation.

G.5. Detail of the TMC Con�dence module

Figure G.13 shows the top-level structure of the TMC, target manoeuvre con�dence

module. The module is a Sugeno type fuzzy inference system. Figures G.14 and G.15
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xh (0)

tmd (1)

range (1)

System tmc1: 4 inputs, 1 outputs, 3 rules

f(u)

tmc (3)

tmc1

(sugeno)

3 rules

Figure G.13: Block diagram of TMC module

shows the membership functions for the tmd and range inputs. There are no mem-

bership functions associated with the xl and xh inputs. There are three rules in

the system. They are as follows:

1. If (range is not good) then (tmc = 0)

2. If (tmd is not hi) and (range is good) then (tmc = 0:5xl � 0:5xh+ 0:5)
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Figure G.14: Membership function for the TMC module manoeuvre detect input

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

0.6

0.8

1

range

D
eg

re
e 

of
 m

em
be

rs
hi

p

good

Figure G.15: Membership function for the TMC module range input



APPENDIX G. TARGET MANOEUVRE DETECTION SOFTWARE 159

3. If (tmd is hi) and (range is good) then (tmc = �0:5xl + 0:5xh + 0:5)

The membership function for the range and the output functions have been chosen

empirically by observation.
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G.6. Initialisation Code

% Target Manoeuvre Detect Software

%

% E.J.Hughes 20/3/98

%

%% Initialisation

%% Load Fuzzy inference system modules

global stage1 stage2 tmdfuzz tmcfuzz k tmx

stage1=readfis('stage1');

stage2=readfis('stage2');

tmdfuzz=readfis('tmd1');

tmcfuzz=readfis('tmc1');

%% correction for source pwr and noise range

k=sqrt(100)/4/pi/(10000^2);

tmx=[0 0 0];

G.7. Detector Main Function { tmdetect.m

% Target Manoeuvre Detect Software

%

% E.J.Hughes 20/3/98

%

%% Detector Function

%

% inputs berr_h and berr_v are a frame of

% bore-sight error samples (typ. 10).

%

% s_rcs is the corresponding frame of the

% radar cross section sum signal (complex).

%

% range is the mean range of the frame.

%

% Output tmd is the detection signal,

% zero no manoeuvre, one is manoeuvre.

%

% Output tmc is a confidence measure and

% lies in the range [0,1].

function [tmd,tmc]=tmdetect(berr_h,berr_v,s_rcs,range)

global stage1 stage2 tmdfuzz tmcfuzz k tmx

fsize=length(berr_h); % frame size

frame=[berr_h' berr_v' s_rcs'];

curr=frame(:,1:2); %berr signals

s=abs(frame(:,3)); %sum signal

s=mean(s);
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currx=curr*s; %correct for RCS

currx=(currx-ones(fsize,1)*mean(currx))/sqrt(2)/k;%normalise

df=curr(2:fsize,:)-curr(1:(fsize-1),:);

dfx=currx(2:fsize,:)-currx(1:(fsize-1),:); % differentials

ss=std(curr);

sp=std(df);

ssx=std(currx);

spx=std(dfx); % std deviations

dx=[ssx' ss';spx' sp'];

dx=dx.*(dx<4.9)+4.9*(dx>=4.9); %crop

dat1=evalfis([dx ones(4,1)*range],stage1); % fuzzy pre-process

dx=dat1.*(dat1<4.9)+4.9*(dat1>=4.9); %crop

dat=evalfis(dx',stage2); % fuzzy combine

tmx=evalfis([dat tmx(2:3) range],tmdfuzz); % detect (tmd)

tmd=tmx(1);

tmc=evalfis([dat tmx(1) range],tmcfuzz); % confidence (tmc)

G.8. Pre-Processor Module { stage1.�s

[System]

Name='stage1'

Type='sugeno'

NumInputs=3

NumOutputs=1

NumRules=4

AndMethod='prod'

OrMethod='probor'

ImpMethod='min'

AggMethod='max'

DefuzzMethod='wtaver'

[Input1]

Name='s_n'

Range=[0 5]

NumMFs=0

[Input2]

Name='s_r'

Range=[0 5]

NumMFs=0

[Input3]

Name='range'

Range=[0 20000]

NumMFs=4

MF1='end':'trapmf',[-500 0 500 1000]

MF2='close':'trimf',[500 1000 3000]

MF3='short':'trimf',[1000 3000 5000]
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MF4='long':'trapmf',[3000 5000 20000 30000]

[Output1]

Name='out'

Range=[0 1]

NumMFs=4

MF1='a_long':'linear',[1 0 0 0]

MF2='b_short':'linear',[0 100 0 0]

MF3='b_close':'linear',[0 30 0 0]

MF4='b_end':'linear',[0 10 0 0]

[Rules]

0 0 4, 1 (1) : 1

0 0 3, 2 (1) : 1

0 0 2, 3 (1) : 1

0 0 1, 4 (1) : 1

G.9. Combiner Module { stage2.�s

[System]

Name='stage2'

Type='mamdani'

NumInputs=4

NumOutputs=2

NumRules=8

AndMethod='prod'

OrMethod='probor'

ImpMethod='prod'

AggMethod='sum'

DefuzzMethod='centroid'

[Input1]

Name='h'

Range=[0 5]

NumMFs=1

MF1='hi':'trapmf',[1.5 3 5 6]

[Input2]

Name='v'

Range=[0 5]

NumMFs=1

MF1='hi':'trapmf',[1.5 3 5 6]

[Input3]

Name='dh'

Range=[0 5]

NumMFs=1

MF1='hi':'trapmf',[3 4.5 5 6]
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[Input4]

Name='dv'

Range=[0 5]

NumMFs=1

MF1='hi':'trapmf',[3 4.5 5 6]

[Output1]

Name='xl'

Range=[-1 2]

NumMFs=2

MF1='no':'trimf',[-1 0 1]

MF2='yes':'trimf',[0 1 2]

[Output2]

Name='xh'

Range=[-1 2]

NumMFs=2

MF1='no':'trimf',[-1 0 1]

MF2='yes':'trimf',[0 1 2]

[Rules]

1 1 1 1,1 0 (1) 2

-1 -1 -1 -1,2 0 (1) 1

0 0 -1 -1,0 1 (1) 1

-1 -1 0 0,0 1 (1) 1

0 1 0 1,0 2 (1) 1

1 0 1 0,0 2 (1) 1

1 0 0 1,0 2 (1) 1

0 1 1 0,0 2 (1) 1

G.10. Detector Module { tmd1.�s

[System]

Name='tmd1'

Type='sugeno'

NumInputs=5

NumOutputs=3

NumRules=16

AndMethod='prod'

OrMethod='probor'

ImpMethod='min'

AggMethod='max'

DefuzzMethod='wtsum'

[Input1]

Name='xl'

Range=[0 1]
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NumMFs=1

MF1='hi':'trapmf',[0.25 0.75 1 2]

[Input2]

Name='xh'

Range=[0 1]

NumMFs=1

MF1='trip':'trapmf',[0.25 0.251 1 2]

[Input3]

Name='delay_i'

Range=[0 15]

NumMFs=1

MF1='off':'trapmf',[-1.5 0 0.5 0.55]

[Input4]

Name='hold_i'

Range=[-15 15]

NumMFs=1

MF1='off':'trapmf',[-20 -15 0.5 0.55]

[Input5]

Name='range'

Range=[0 20000]

NumMFs=4

MF1='close':'trapmf',[-1000 0 1000 5000]

MF2='short':'trimf',[1000 5000 10000]

MF3='med':'trimf',[5000 10000 15000]

MF4='long':'trapmf',[10000 15000 20000 30000]

[Output1]

Name='tmd'

Range=[0 1]

NumMFs=3

MF1='off':'constant',0

MF2='on':'constant',1

MF3='def':'constant',0

[Output2]

Name='delay'

Range=[0 5]

NumMFs=7

MF1='off':'constant',0

MF2='short':'constant',0.5

MF3='med':'constant',1.75

MF4='long':'constant',2.5

MF5='dec':'linear',[0 0 1 0 0 -1]

MF6='def':'constant',0

MF7='shortish':'constant',1.0
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[Output3]

Name='hold'

Range=[-15 15]

NumMFs=9

MF1='off':'constant',0

MF2='short':'constant',4

MF3='med':'constant',6

MF4='long':'constant',10

MF5='dec':'linear',[0 0 0 1 0 -1]

MF6='coast':'linear',[0 0 0 1 0 0]

MF7='v_short':'constant',2

MF8='def':'constant',0

MF9='force':'linear',[0 0 0 -1 0 0]

[Rules]

0 1 0 1 4, 3 2 8 (1) : 1

0 1 0 0 4, 3 6 4 (1) : 1

0 1 0 1 3, 3 7 8 (1) : 1

0 1 0 0 3, 3 6 3 (1) : 1

0 1 0 1 2, 3 3 8 (1) : 1

0 1 0 0 2, 3 6 2 (1) : 1

0 1 0 1 1, 3 4 8 (1) : 1

0 1 0 0 1, 3 6 7 (1) : 1

0 0 0 1 0, 1 1 1 (1) : 1

0 0 -1 -1 0, 1 6 8 (1) : 1

0 0 1 -1 0, 2 1 8 (1) : 1

-1 0 -1 0 0, 3 5 8 (1) : 1

1 0 0 -1 0, 3 6 5 (1) : 1

-1 -1 1 0 0, 3 6 6 (1) : 1

1 0 0 1 0, 3 1 1 (1) : 1

1 0 -1 0 0, 3 1 9 (1) : 1

G.11. Con�dence Module { tmc1.�s

[System]

Name='tmc1'

Type='sugeno'

NumInputs=4

NumOutputs=1

NumRules=3

AndMethod='prod'

OrMethod='probor'

ImpMethod='min'

AggMethod='max'

DefuzzMethod='wtsum'

[Input1]
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Name='xl'

Range=[0 1]

NumMFs=0

[Input2]

Name='xh'

Range=[0 1]

NumMFs=0

[Input3]

Name='tmd'

Range=[0 1]

NumMFs=1

MF1='hi':'trimf',[0 1 2]

[Input4]

Name='range'

Range=[0 30000]

NumMFs=1

MF1='good':'trapmf',[300 3000 10000 20000]

[Output1]

Name='tmc'

Range=[0 1]

NumMFs=3

MF1='off':'constant',0

MF2='wait':'linear',[0.5 -0.5 0 0 0.5]

MF3='lock':'linear',[-0.5 0.5 0 0 0.5]

[Rules]

0 0 0 -1, 1 (1) : 1

0 0 -1 1, 2 (1) : 1

0 0 1 1, 3 (1) : 1


